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Abstract—We have developed a nonlinear method of
time series analysis, that allows us to obtain multiple non-
linear trends from a given set of numerical data. We pro-
pose to apply the method to recognize the ongoing status
of COVID-19 infection, and applied to the time series of
daily new cases in Japan. We found that there is only a
single nonlinear trend, and this result justifies the use of
a week-based infection growth rate as an index. In addi-
tion, the fitting with the obtained nonlinear trend holds for
a duration of more than three months for the Delta variant
infection time series. The fitting also visualizes the transi-
tion to the Omicron variant.

1. Introduction

Understanding the COVID-19 infection status, such as
“what’s going on?” and “what happens next?”, has been a
major issue in the last couple of years.

Various forecasting methods have been studied to ad-
dress this issue. Among them, machine learning (ML)
based studies have played a major role. For example, vari-
ous methods such as Linear Regression (LR), Least Abso-
lute Shrinkage and Selection Operator (LASSO), Support
Vector Machine (SVM), and Exponential Smoothing (ES)
were compared to achieve better prediction [1]. In addition,
other methods such as Auto-Regressive Integrated Moving
Average (ARIMA) based approach [2], and Gaussian Pro-
cess Regression (GPR) based approach [3] were also stud-
ied for forecasting.

In contrast to their focusing on “what happens next?”, we
focus on “what’s happening now?” in this paper. That is,
we propose a framework to recognize nonlinear phenom-
ena, and apply the framework to COVID-19 infection time
series to recognize “what happens now”.

We have a unique nonlinear method of time series anal-
ysis that provides an analytical perspective on numerically
obtained nonlinear time series [4, 5, 6], and we apply the
method to COVID-19 daily new cases in Japan.

As there are no similar conventional methods, we show
an example of obtained results with our method in a previ-
ous work [7] to illustrate our approach.

Figure 1(a) shows a numerically calculated time series
S (t) of a gravitational wave named A1B3G3 which corre-
sponds to black hole generation at t = t0 [8]. We applied
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our method to the time series before the black hole genera-
tion t < t0.

Time series S (t) with multiple nonlinear trends λm(t) is
expressed in the form of S (t) =

∑
m exp

∫
λm(t)dt, and the

fitted λm(t) with our method are plotted in Fig. 1(b).
It should be noted that a linear system dx/dt − λx = 0

has constant λ(t) = λ, and its corresponding time se-
ries becomes exp

∫
λ(t)dt = expλt. That is, non-constant

λ(t) means that the analyzed system is nonlinear. Note
also that a linear system with multiple λm is written as[∏

m (d/dt − λm)
]

x = 0.

Figure 1: Example of nonlinear analysis. (a) Time series
for analysis, and (b) obtained nonlinear trends.

Obtained nonlinear trends just before t = t0 are

λ1(t) = 2.3(t0 − t)−0.4 (1)
λ2(t) = 0.25(t0 − t)−0.4, (2)

– 103 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

https://orcid.org/0000-0002-1375-494X


and the corresponding time series becomes

S 0(t) ≃ 702e
∫ t

t0
λ1(τ)dτ

+ 168e
∫ t

t0
λ2(τ)dτ

= 702e2.3
∫ t

t0
(t0−τ)−0.4dτ

+ 168e0.25
∫ t

t0
(t0−τ)−0.4dτ

= 702e−
2.3
0.6 (t0−t)0.6

+ 168e−
0.25
0.6 (t0−t)0.6

. (3)

The fitted time series Eq. (3) is plotted in Fig. 1(a). The
time series around t0 − t ∼ 2 ms and t0 − t > 10 ms are

S 1(t) ≃ 29e−
2.3
0.2 (t0−t)0.2

+ 96e−
0.2
0.3 (t0−t)0.3

(4)
S 2(t) ≃ 29e−0.085(t0−t) (5)

respectively. Each equation corresponds to each phase.
This kind of analytical expression becomes possible with

our method, and we apply the method to a COVID-19 in-
fection time series.

In the following sections, we introduce our method of
analysis, apply the method to the analysis of a COVID-19
time series, and finally, we conclude the paper.

2. Method

Our method is based on a mode decomposition with gen-
eral complex functions, which organize nonlinear oscilla-
tors [4, 5, 6], and we calculate the local linearized solution
of the decomposition.

Nonlinear trends extraction is a part of our method. Ob-
tained nonlinear oscillators with zero frequency correspond
to nonlinear trends.

2.1. Model Equation

We expand the given time series S (t) ∈ R with general
complex functions Hm(t) ∈ C as

S (t) =
M∑

m=1

eHm(t), (6)

where M is the number of the complex functions.
The complex functions are expressed as

Hm(t) = ln cm(t0) +
∫ t

t0
[2πi fm(τ) + λm(τ)]dτ, (7)

where fm(t) ∈ R represents the frequency modulation
(FM) terms [9], which are known as instantaneous frequen-
cies, λm(t) ∈ R represents the amplitude modulation (AM)
terms, which correspond to our original [4, 5, 6] nonlin-
ear trends, and cm(t0) ∈ C represents the amplitudes of the
oscillators at t = t0.

This expansion corresponds to a mode decomposition
with general complex functions, noting that

H′m(t) = 2πi fm(t) + λm(t). (8)

2.2. Local Linearized Solution

As it is known that our model equation Eq. (6) does not
have a unique solution, due to the nonlinearity [10], we
need an additional concept to make our model equation
uniquely solvable. For this purpose, we apply a local lin-
earization technique

S (t)|t∼tk ≃
M∑

m=1

eHm(tk)+H′m(tk)(t−tk)+O((t−tk)2) (9)

around t ∼ tk = t0 + k∆T , consider a short enough time
width, and ignore the higher order terms O((t − tk)2) [11].

Then, the equation becomes a simple linear equation

S (t)|t∼tk ≃
M∑

m=1

eHm(tk)+H′m(tk)(t−tk), (10)

and we can obtain unique H′m(tk) easily by using the linear
predictive coding (LPC) method with N samples, noting
that we must use a non-standard numerical method to solve
LPC [6, 12].

Next, we calculate the complex amplitudes cm(tk) of the
oscillators cm(tk)eH′m(tk)(t−tk) as

arg min
cm(tk)

N−1∑
n=0

S (tk + n∆T ) −
M∑

m=1

cm(tk)enH′m(tk)∆T

2 , (11)

and we obtain a local linearized solution

S (t)|t∼tk ≃
M∑

m=1

cm(tk)e[2πi fm(tk)+λm(tk)](t−tk). (12)

2.3. Related Methods

We list major conventional methods in Table 1 [6].

Table 1: Comparison with major conventional methods.
FM AM Comment

Our method fm(t) λm(t) calc. both funcs.
AR models fm λm < 0 time-invariant

DFT m/M∆T 0 prefixed freqs.
STFT m/M∆T 0 time-variant cm

FM terms fm(t) and AM terms λm(t) for the conventional
methods are time-invariant, meaning that they are linear
methods.

Auto-Regressive (AR) models, such as LPC and Maxi-
mum Entropy Method (MEM), use a Tœplitz matrix as an
autocorrelation matrix, and time-invariant λm(t) = λm is
limited to negative values [12]. In addition, they do not
calculate complex amplitudes cm. Prony’s method [13] is a
kind of AR model, which calculates cm. However, Prony’s
method is a historical one (published in 1795), and the
method is considered only for reference.

Fourier transform methods such as the Discrete Fourier
transform (DFT) and Short-Time Fourier Transform

– 104 –



(STFT) do not calculate fm(t), and they use prefixed time-
invariant frequencies fm(t) = m/M∆T . They calculate cm

of corresponding prefixed frequencies. In addition, they ig-
nore λm(t), because they focus on periodic cases.

3. Analysis

We used the WHO’s COVID-19 global data [14] for
analysis, and selected the time series of daily new cases
in Japan.

Parameters for the analysis were set to M = 7, N = 14.
That is, we used two weeks width data for single analysis,
and we plot the results in weekly basis as shown in Fig. 2.
Note that major results are not affected by the parameters,
in contrast to conventional methods [12].

We show the time series for analysis S (t) in Fig. 2(a),
obtained nonlinear trends λm(t) in Fig. 2(b), and
|cm(t)| vs fm(t), which corresponds to the spectrum, in
Fig. 2(c).

Figure 2: Daily new cases in Japan. (a) Time series for
analysis, (b) obtained nonlinear trends, and (c) spectrum.

In contrast to the previous case shown in Fig. 1, multi-

ple nonlinear trends are not evident in Fig. 2(b). The sys-
tem seems to have a single nonlinear trend, which holds for
other countries also. The reason for this will be explained
in a further study.

The plotted time seres in Fig. 2(b) correspond to the plots
at the zero frequency region f = 0 in Fig. 2(c). Weekly os-
cillation f = 1, and its second and third harmonics are also
plotted in Fig. 2(c). As we focus on the nonlinear trends,
these harmonics are not preferable terms.

As the system seems to have a single nonlinear trend,
simplified analysis becomes possible. That is,

λ(t) = log2

∑t
τ=t−6 S (τ)∑t−7
τ=t−13 S (τ)

, (13)

where weekly summation is used to suppress weekly peri-
odicity and its higher harmonics shown in Fig. 2(c). This
equation is known as the week-based infection growth rate,
and is justified only when there is a single nonlinear trend.

We apply Eq. (13) to the Delta to Omicron variant tran-
sition in Japan, and show in Fig. 3.

Figure 3: Delta to Omicron variant transition. (a) Time
series for analysis, and (b) obtained nonlinear trend.

Fitted line in Fig. 3(b) is the week-based nonlinear trend
of the Delta variant

λ(t) = 0.02(t − t0), (14)

where t0 is 24/Nov/2021, and corresponding time series

S (t) = 120 · 20.01(t−t0)2/7 (15)

is plotted in Fig. 3(a). This fitted line holds from Sept/2021
to Jan/2022, meaning that the infection status maintained
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the nonlinear trend for over three months, and the transition
to the Omicron variant happened in Jan/2022. The Delta
variant was replaced by the Omicron variant at that time,
and the extrapolated line in Fig. 3(b) after the replacement
will no longer hold. Another fitting for the Omicron variant
is required.

Obtained nonlinear time series Eq. (15) is explained as
follows. A time series s(t) with a parameter p and with a
lowest order perturbation term ϵt becomes

s(t) ∝ e
∫ t

0 p+ϵτdτ = ept+ 1
2 ϵt

2
= ce

1
2 ϵ(t−t0)2

, (16)

where t0 is the time of zero crossing, and c is the corre-
sponding amplitude. The linear term p disappears, and the
nonlinear term ϵ takes the place.

4. Conclusion

We demonstrated a nonlinear analysis that provides an
analytical perspective on a given numerical time series. We
focused on the extraction of nonlinear trends λm(t) ∝ tαm ,
where αm corresponds to the index of nonlinearity, noting
that αm = 0 is the linear case.

We applied our method to a time series of COVID-19
daily new cases in Japan, and found that there is only a sin-
gle nonlinear trend. This result justifies the use of a week-
based growth rate index.

The obtained nonlinear trend was λ(t) ∝ t, and the fit-
ting holds for the Delta variant infection status for a dura-
tion exceeding three months. The fitting also visualized the
transition to the Omicron variant.

The obtained nonlinear trend λ(t) ∝ t was also observed
in another work [15], and this characteristics will be found
widely, because of the universality of Eq. (16).
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celles de la Force expansive de la vapeur de l’eau et
de la vapeur de l’alkool, à différentes températures,”
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