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Abstract—Critical transitions are large-scale state tran-
sitions that occur occasionally in various complex systems
such as ecosystems, climate systems, and financial mar-
kets. In order to help predict critical transitions before
they occur, several measures for early warning signals have
been proposed such as the variance and autocorrelation of
a state variable. However, they are related to the linear
stability and cannot be used to estimate the critical tran-
sition probability. In this study, I propose a nonlinearity-
based method for estimating the critical transition proba-
bility. It is based on my previous method using quadratic
polynomial approximation, and skewness filtering is added
as a reject option so that predictions are made only when
the observed distribution is sufficiently skewed. The pro-
posed method uses either the least squares method (LSM)
or maximum likelihood estimation (MLE). The proposed
method is applied to May model, a mathematical model of
an ecosystem, as an example case. The results of numerical
simulations show that the proposed method has much bet-
ter precision than the previous method without skewness
filtering. In addition, it is found that MLE requires much
less data points than LSM if auto-correlation is weak.

1. Introduction

Critical transitions are large-scale state transitions that
occur occasionally in various complex systems such as
ecosystems, climate systems, and financial markets [1, 2].
In order to help predict critical transitions before they oc-
cur, several measures for early warning signals have been
proposed such as the variance, autocorrelation, and recov-
ery rate [3–6]. These measures can be calculated even if
the equation describing the dynamics of the target system
or its parameters are unknown.

However, the abovementioned measures are related to
the linear stability of a stable equilibrium or fixed point [7],
and nonlinearity is not considered. Because they contain
no information on the basin of attraction, they cannot be
used to estimate the critical transition probability, i.e., the
probability of the occurrence of a critical transition within
a given period.

In order to overcome this issue, in a previous study, I
proposed a nonlinearity-based approach in which the equa-
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tion of the target dynamical system was approximated by a
quadratic polynomial based on the observed data, and the
critical transition probability was estimated from the po-
tential shape and the noise intensity [8]. Unfortunately, the
precision of the proposed method was quite low. Even if
105 data points were available, the estimated mean escape
time T̂ was more than twice or less than half of the true
value with a probability of 50 % or more.

In this study, I propose an improved method based on
the previous method. Skewness filtering is added as a re-
ject option so that predictions are made only when the ob-
served distribution is sufficiently skewed. I also investigate
difference between the least squares method and maximum
likelihood estimation.

The rest of the paper is organized as follows. In Sec-
tion 2, theoretical background is explained. In Section 3,
the proposed estimation method is explained. In Section 4,
simulation settings are explained. In Section 5, the results
of numerical simulations are shown. In Section 6, discus-
sion and conclusions are given.

2. Theoretical Background

In this study, we consider continuous-time stochastic dy-
namical system that can be described as follows:

dx = f (x)dt + σ dW, (1)

where x ∈ R is a state variable, f : R → R is a time-
invariant continuously differentiable nonlinear function, t ∈
R is time, σ > 0 is noise strength, and W is Wiener process.
We assume that there exists a potential function U satisfy-
ing f = −U′, where U′ denotes the derivative of U with
respect to x. We also assume that U has a local minimum
at xs and a local maximum at xu, as shown in Fig. 1. They
are corresponding to a pair of stable and unstable equilib-
ria that collides at a saddle-node bifurcation for the case of
σ → 0. We assume xu < xs without loss of generality.
Initial state x0 is assumed to be close to xs.

When x exceeds xu enough, it is determined that a criti-
cal transition has occurred. It has been known that the mean
escape time T can be approximated as follows [9]:

T =
2π√

− f ′(xs) f ′(xu)
exp

(
2
σ2 (U(xu) − U(xs))

)
, (2)
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Figure 1: Schematic diagram of f (x), U(x), and p(x).
Filled and empty circles indicate xs and xu, respectively.
Dashed line in the top panel shows the line with f (x) = 0.

where f ′ denotes the derivative of f . The reciprocal of T
is called the Kramers’ escape rate [10]. If T is sufficiently
large, the cumulative transition probability for a given pe-
riod t can be described as P(y ≤ t) = 1 − exp(−t/T ).

The quasi-stationary distribution before a transition can
be approximated by the Boltzmann distribution as follows
[8]:

p(x) =
1
Z

exp
(
−

2
σ2 U(x)

)
, x > xu, (3)

where Z > 0 is a normalizing constant.

3. Estimation Method

In this section, an estimation method for the critical tran-
sition probability is explained. We assume that f is un-
known and time series data D = {x1, . . . , xN} is available.
The measurement interval is assumed to be constant and
denoted as ∆t. We use quadratic polynomial approximation
of f instead of linear approximation in order to estimate xu.

Two variants are considered. First one is to directly esti-
mate f by using the least squares method (LSM). The ap-
proximated function is described as follows:

f (x) ≈ f̂ (x) = a0 + a1x + a2x2, (4)

where a0, a1, a2 ∈ R are coefficients. They are esti-
mated by applying LSM to two-dimensional data points
{(xn,∆xn)} (n = 1, . . . ,N − 1) where ∆xn = (xn+1 − xn)/∆t.
U, f ′, xs, and xu are estimated from f̂ . σ is estimated to
be σ̂ =

√
∆t std(∆x − f̂ (x)), where std denotes standard

deviation. T is estimated by using (2).
Another method is to directly estimate g = (2/σ2)U by

using the maximum likelihood estimation (MLE). The ap-
proximated function is described as follows:

2
σ2 U(x) ≈ ĝ(x) = η1x + η2x2 + η3x3, (5)

where η1, η2, η3 ∈ R are coefficients. The likelihood func-
tion is p(x) = exp(−ĝ(x))/Z, and the coefficients can be
obtained by solving the following linear equation [11]:

1 2x 3x2

2x 4x2 6x3

3x2 6x3 9x4


 η1
η2
η3

 =

 0
2
6x

 . (6)

The noise strength σ is estimated in a similar manner to
the first method. U, f , f ′, xs, and xu are estimated from ĝ
and σ̂. T is estimated by using (2).

When the distribution of the observations D is not
skewed, it is difficult to estimate xu correctly, which leads
to unreliable estimation of the mean escape time T . In or-
der to resolve this issue, skewness filtering is introduced;
predictions are made only when the skewness of the ob-
served distribution is below a threshold θ.

4. Simulation Settings

The proposed method was applied to May model [12]. It
is a mathematical model of an ecosystem and used in many
studies on critical transitions [1, 5, 13–15]. May model has
mono- and bi-stable regions, and saddle-node bifurcations
occur between them except for the cusp [8], as shown in
Fig. 2. May model is described as follows:

dx
dt

= f (x) = r x
(
1 −

x
K

)
−

c x2

x2 + h2 , (7)

where x is the population size, r is the growth rate, K is the
maximum population size, c is the consumption rate, and h
is the half saturation constant. Because r and K can be set
to 1 without loss of generality [8,12], we assume r = K = 1
henceforth.

The stochastic differential equation (1) was solved using
Euler-Maruyama method as follows:

xn+1 = xn + f (xn)∆t + σ
√

∆t ξn, (8)

where ξn is a pseudo-random number following the stan-
dard normal distribution. Because x = 0 corresponds to an
unstable equilibrium of the original noise-less May model
(7), xn+1 was replaced with 0 when it was negative.

The parameter settings were as follows: h = 0.1, c =

0.257, ∆t = 0.1, σ = 0.01, and x0 = xs ' 0.539. The
closest bifurcation point was c ' 0.260.

We also consider resampling from the time series data
D = {x1, . . . , xN}. Every k points {x1, x1+k, x1+2k, . . .} were
extracted.

5. Results

Figure 3 shows cumulative probability of empirical
skewness. The probability of empirical skewness being less
than −0.5 was more than 20 % for N = 104 and N = 105

and approximately 15 % for N = 103.
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Figure 2: Bifurcation diagram of May model. Solid and
dashed lines show stable and unstable equilibria, respec-
tively. r = K = 1 and h = 0.1.

Figure 3: Cumulative probability of empirical skewness.
The number of trials was 1 000.

Figure 4 shows relations between the threshold of skew-
ness θ and the absolute error of the mean escape time. The
absolute error tended to increase as θ increased. The preci-
sion was similar between LSM and MLE for N = 104 and
N = 105. The relative error T̂/T was approximately ±50 %
for both cases when θ = −0.5 and N = 105.

Figure 5 shows relations between the resampling interval
k and the absolute error of the mean escape time. The ab-
solute error increased largely as k increased for the case of
LSM. In contrast, the absolute error did not increase much
for MLE. Please notice that the scale of the horizontal axis
is different between Fig. 5A and Fig. 5B. When N = 105,
the relative error T̂/T for the case of MLE was approxi-
mately ±60 % and ±70 % for k = 10 and 100, respectively.

6. Discussion and Conclusions

I discuss how to choose the threshold of skewness θ in
practice. When θ is too small, predictions are refrained in
most cases as shown in Fig. 3. On the other hand, when θ
is too large, the prediction error becomes huge as shown in
Fig. 4. The acceptable range of θ depends on the situation,
and it should be determined regarding the trade-off. For ex-
ample, θ = −0.5 would be acceptable if 1 000 uncorrelated
data points, which correspond to the case of N = 105 and
k = 100, are available, and one requires that the prediction
probability is more than 20 % and the relative prediction

Figure 4: Relations between the threshold of skewness and
the absolute error of the mean escape time for the cases
of (A) least squares method and (B) maximum likelihood
estimation. Error bars show 95 % confidence intervals. The
number of trials was 1 000. k = 1.

error T̂/T is within ±70 % on average.
Next, I discuss why MLE was better than LSM with

resampling interval k > 1 as shown in Fig. 5. Because
larger k generally causes weaker auto-correlation of time
series data, a possible reason is that the two variants of the
proposed method responded differently to auto-correlation.
In fact, even if the number of data points were the same,
MLE showed different performance with (N, k) = (103, 1),
(104, 10), and (105, 100).

Next, I discuss an unresolved issue on the MLE ap-
proach. The estimated mean escape time T̂ is biased even if
independently and identically distributed data points drawn
from the quasi-stationary distribution (3) were used. A pos-
sible reason is that data points below xu are missing.

Future works are the correction of the abovementioned
bias, application of the proposed method to other cases,
dealing with irregular measurement intervals, and so on.

In conclusion, I have proposed a method for estimating
critical transition probability using quadratic polynomial
approximation with skewness filtering. It was applied to
May model. The results of numerical simulations showed
that the precision of the proposed method was much better
than that of the previous method without skewness filter-
ing [8]. It was also found that MLE required much less
data points than LSM if auto-correlation was weak.
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Figure 5: Relations between the resampling interval and
the absolute error of the mean escape time for the cases
of (A) least squares method and (B) maximum likelihood
estimation. Error bars show 95 % confidence intervals. The
number of trials was 1 000. θ = −0.5.
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