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Abstract– Phase waves rotating in a ring of 
unidirectionally coupled parametric oscillators are studied. 
The system has a pair of spatially uniform stable periodic 
solutions with a phase difference as well as unstable 
quasiperiodic traveling phase wave solutions, which are 
generated from the origin through a period doubling 
bifurcation and the Neimark-Sacker bifurcation, 
respectively. In transient states, phase waves rotating in a 
ring are generated, the duration of which increases 
exponentially with the number of oscillators (exponential 
transients).  
 
1. Introduction  

 
In spatially extended bistable systems, it has been 

shown that transient spatially non-uniform patterns last for 
a long time, the duration of which increases exponentially 
with system size. Then systems never reach their 
asymptotic spatially uniform steady states in a practical 
time when system size is large, and transient states can not 
be discriminated from steady states. These exponential 
transients have been shown in a one-dimensional reaction-
diffusion equation (the time-dependent Ginzburg-Landau 
equation), in which a kink (a front) or pairs of a kink and 
antikink (pulses) exists in transient states [1 – 3]. Similar 
spatial patterns have been shown in various reaction-
diffusion systems and convection-diffusion systems, 
which are referred to as metastable dynamics [4, 5]. 
Recently, the authors have shown exponential transient 
oscillations which are rotating waves in a ring of 
unidirectionally coupled sigmoidal neurons [6] as well as 
in bistable rings of coupled maps [7, 8]. Since discrete-
time map systems are regarded as the Poincaré  maps in 
continuous-time systems, it is expected that exponential 
transient states exist in systems which have bistable 
periodic solutions.  

In this study, we consider a ring of unidirectionally 
coupled parametric oscillators and phase waves rotating in 
it. A single oscillator shows bistable parametric 
oscillations with a phase difference π [9]. A ring of 
oscillators then has bistable spatially uniform periodic 
solutions. In addition, it has unstable quasiperiodic 
traveling wave solutions in which the phases of the 
oscillations of elements rotate in a ring. These rotating 
phase waves last for exponentially long time until the 
system reaches one of stable spatially uniform oscillations.  

2. Unidirectionally Coupled Parametric Oscillators  
 
We consider the following coupled oscillators.  
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A total N of parametric oscillators [9] are unidirectionally 
coupled with strength c (≥ 0) and make a closed loop with 
u0 = uN. A coefficient αsin(2t) of un in the right-hand side 
of the second equation varies sinusoidally with a period π. 
The values of parameters are fixed as β = 1.0, γ = 0.5 and 
c = 0.2, and then α is used for a bifurcation parameter. The 
Poincaré map of (u1(t), v1(t)) at t = mπ (m: integer) is used 
for bifurcation analysis of Eq. (1).  

First, Fig. 1(a) shows a bifurcation diagram of a single 
oscillator (N = 1). We omit the element numbers for a 
single oscillator. The origin (u = v = 0) is a stable steady 
state for α < 1.014. It is destabilized through a subcritical 
period doubling bifurcation at α ≈ 1.014 (PD) and a pair 
of unstable solutions of period two is generated. A pair of 
stable solutions of period two with the large amplitude 
also exists and two pairs of the solutions disappear 
through saddle-node bifurcations at α ≈ 0.961 (SN). The 
stable pair corresponds to parametric oscillations with a 
period 2π and a phase difference between them is π. 
Figure 1(b) shows the trajectory of a stable periodic 
solution for α = 1.1 obtained with computer simulation of 
Eq.(1), in which open circles (○) denote the states at t = 
mπ. Further, they become chaotic at α ≈ 1.8 through a 
pitchfork bifurcation at α ≈ 1.681 (PF) and a cascade of 
period doubling bifurcations over α ≈ 1.793.  

 
 
 
 
 
 
 
 
 
 
Fig. 1.  Bifurcation diagram (a) and trajectory (b) of a 

single oscillator.  
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Next, Fig. 2 shows a bifurcation diagram of Eq. (1) 
with six oscillators (N = 6) about α ≈ 1. As α increases, a 
stable invariant closed curve is generated from the origin 
((un, vn) = (0, 0) (1 ≤ n ≤ N)) through the Neimark-Sacker 
bifurcation at α ≈ 0.988 (NS1). The generated 
quasiperiodic solutions on it are traveling phase waves 
rotating in the ring because of the invariance of Eq. (1) 
under cyclic shifts in n. Further, they lie in the subspace: 
un+N/2 = –un, vn+N/2 = –vn (1 ≤ n ≤ N/2) when N is even 
since Eq. (1) is invariant under changes in the signs of un 
and vn. Although the branch of the unstable closed 
invariant curve can not be traced with our method, 
traveling phase waves are observed with computer 
simulation putting initial conditions in the invariant 
subspace, e.g.  

 

).2/()(0.1)0()0(
)1(0.1)0()0(

NlNnlvu
lnvu

hhnn

hnn

=≤<==
≤≤−==    (2)  

 

They are observed stably in the subspace when α > 0.984. 
Hence it is expected that a pair of closed invariant curves 
is generated through a saddle-node bifurcation at α ≈ 
0.984 (SN1) and the unstable branch is connected to the 
origin at α ≈ 0.988 through some bifurcations. (Maximum 
values of u1(t) are plotted for the quasiperiodic traveling 
phase waves in Fig.2.)  

On the other hand, pairs of solutions of period two are 
generated through saddle-node bifurcations at α ≈ 0.961 
(SN) in the same manner as a single oscillator. The stable 
pair corresponds to spatially uniform parametric 
oscillations with a period 2π and a phase difference π. The 
unstable pair causes the Neimark-Sacker bifurcation at α ≈ 
0.971 (NS) and connects to the origin through a period 
doubling bifurcation at α ≈ 1.014 (PD).  
 
 
 
 
 
 
 
 

Fig. 2.  Bifurcation diagram of a ring of six oscillators.  
 
Figure 3 shows an example of the traveling phase waves 
obtained with computer simulation of Eq. (1) with N = 6, 
α = 1.1 under the initial condition Eq. (2). Plotted are time 
courses of vn(t) (1 ≤ n ≤ N) (a) and snapshots of spatial 
patterns vn(t) at t = 2mπ (m = 664, 672, 680) (b). The 
amplitude and phase of each oscillator changes 
quasiperiodically, which rotates in the ring. Further, Fig. 4 
shows the Poincaré map of (u1(t), v1(t)) at t = 2mπ (a) and 
sequences u1(2mπ) and v1(2mπ) (b) (1001 ≤ m ≤ 1100). 
The state jumps and rotates clockwise on an invariant 
curve (Successive 20 points are plotted with open circles 
in (a)), which corresponds to changes in the phase of the 
first oscillator.  

It is shown with computer simulation of Eq. (1) that the 
traveling phase waves are unstable except for α close to 
the bifurcation point at the origin (α ≈ 0.988). The system 
reaches one of the stable spatially uniform oscillations 
when α > 0.988 eventually, but rotating phase waves 
appear generally in transient states. Figure 5 shows an 
example of transient phase waves in a ring of ten 
oscillators. It rotates four times in a ring and converges to 
a spatially uniform oscillation at t ≈ 770. It will be shown 
in Sect. 4 that the duration of such transient phase waves 
increases exponentially with the number of oscillators.  
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  Traveling phase wave in a ring of six oscillators.  
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Traveling phase wave at t = 2mπ.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Transient phase wave in a ring of ten oscillators.  
 
3. A Coupled Map Model  

 
In transients of a single oscillator to one of stable 

spatially uniform oscillations, the states quickly approach 
a one-dimensional curve. Figure 6(a) shows the Poincaré 
map of (u(t), v(t)) at t = 2mπ (m: integer) in transient states 
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of a single oscillator with α = 1.1. Plotted are (u(2mπ), 
v(2mπ)) (11 ≤ m ≤ 20) obtained with 1000 runs of 
computer simulation under random initial conditions: u(0), 
v(0) ~ U(–1.5, 1.5). The states approach the fixed points 
(uf, vf) ≈ (±1.01, ±0.87) (open circles) along a one-
dimensional curve (solid circles) as two examples plotted 
with open triangles and open squares, and hence the 
approach is expressed with a one-dimensional map.  

Figure 6(b) then shows a return map u(2(m+1)π) = 
g(u(2mπ)) for α = 1.1 (a solid line). It is approximated by 
a sinusoidal function of u (crosses)  
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Equation (1) is thus approximated by a discrete-time 
system with g(u) as  
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where unidirectional linear coupling is used and c' 
corresponds to coupling strength.  

The bifurcations of spatially uniform states (un(t) = u(t) 
(1 ≤ n ≤ N))  in Eq. (4) are the same as those of a single 
oscillator (N = 1). Figure 7 shows differences g(u) – u for 
α = 0.95, 0.96, 0.97, 1.0 and 1.02. The origin (u = 0) is a 
globally stable fixed point when α ≤ 0.95. As α increases, 
pairs of stable and unstable fixed points are generated 
through saddle-node bifurcations at α ≈ 0.96. A pair of 
generated stable fixed points corresponds to stable 
parametric oscillations with a period 2π and a phase 
difference π in Eq. (1). A pair of generated unstable fixed 
points then disappears and the origin is destabilized 
through a subcritical pitchfork bifurcation at α ≈ 1.01.  

 
 

 
 
 
 
 
 

 
Fig. 6.  Poincaré map (a) and a return map (b) of a single 

oscillator.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7.  Return maps g(u) – u of a single oscillator.  

A further increase in α causes the Neimark-Sacker 
bifurcations at the origin in Eq. (4) and spatially 
nonuniform solutions are generated. That is, the 
eigenvalues of the Jacobian matrix evaluated at the origin 
(un = 0 (1 ≤ n ≤ N)) is given by  
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As α increases, g'(0) increases and the absolute values of 
pairs of complex conjugate eigenvalues cross unity 
successively. Then closed invariant curves and unstable 
quasiperiodic solutions on them are generated. The 
quasiperiodic solutions are traveling waves rotating in the 
ring because of the invariance of Eq. (4) under cyclic 
shifts in n. The first ones lie in the subspace: un+N/2 = –un 
(1 ≤ n ≤ N/2) when N is even since g(u) is antisymmetric. 
They correspond to the traveling phase waves in Eq. (1) 
and one-dimensionally unstable if the bifurcation is 
supercritical. Hence, the same two kinds of bifurcations (a 
pitchfork and the Neimark-Sacker bifurcations) as Eq. (1) 
occur at the origin in Eq. (4), while the order of the 
appearance of them is reversed.  

When α = 1.1 with g(u) in Eq. (3), the absolute values 
of the first complex conjugate eigenvalues of the Jacobian 
matrix are larger than unity since g'(0) = 1 + Aπ/uf ≈ 1.68 
and the Neimark-Sacker bifurcation has occurred. 
Although the type of the bifurcation (super or sub-critical) 
is unclear, the closed invariant curve and quasiperiodic 
solutions on it are observed with computer simulation. 
The wave forms of the quasiperiodic solutions obtained 
with computer simulation of Eq. (4) with Eq. (3) under the 
symmetric initial condition un(0) in Eq. (2) are similar to 
u1(2mπ) in Fig. 4(b). Equation (4) is bistable and rotating 
waves are generated in transient states as Eq. (1). In the 
following, it will be shown that the kinematics and 
duration of rotating waves in Eq. (4) agree with those in 
Eq. (1).  
 
4. Exponential Duration of Transient Phase Waves  
 
4.1. Kinematics of Pulse Fronts of Phase Waves  

Considering spatial patterns un(t) at t = 2mπ of the 
traveling phase waves as shown in Fig. 3(c), the signs of a 
half of oscillators are positive and those of the other half 
are negative. We refer to each half as a pulse and 
boundaries between pulses as pulse fronts. Two pulse 
fronts propagate at the same speeds.  

Figure 8(a) shows the speed v (the number of 
oscillators in which pulse fronts propagate per time t) of 
the traveling phase wave against the pulse width lh (a half 
of the number of oscillators (= N/2)), which were obtained 
with computer simulation of Eqs. (1) and (4) under a 
symmetric initial condition as Eq. (2). A value of the 
coupling strength c’ in Eq. (4) was taken to be 0.4398 so 
that the speed v(lh → ∞) agrees with that of Eq. (1). The 
speed increases with pulse width and approaches the 
values in the limit of lh → ∞. Further, Fig. 8(b) shows a 
semi-log plot of a difference between v(∞) and v(lh) 
against the pulse width lh (v(30) is used for v(∞)). The 
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difference decreases exponentially with the pulse width 
and is extremely small when the number of oscillators is 
large.  

Using this exponential dependence of the speeds of the 
traveling phase waves on the pulse width, changes in the 
locations l1 and l2 of pulse fronts and the pulse width l = l2 
– l1 in asymmetric rotating phase waves are described by  
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where values of k and r are estimated from the graphs in 
Fig. 8(b) as k = 0.15 and r = 1.18 for Eq. (1) and k = 0.14 
and r = 1.39 for Eq. (4). Here we assume that the 
propagation speeds of pulse fronts depend on their 
backward pulse width as [7, 8] not on their forward pulse 
width as [6] since dv/dlh > 0. This dependency still needs 
further investigation, but the duration of the phase waves 
are well explained with Eq. (6) as shown below.  
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.  Speeds of traveling phase waves.  

 
4.2. Duration of Asymmetric Phase Waves  

Replacing lh in the initial condition Eq. (2) with l0 (1 ≤ 
l0 < N/2), transient asymmetric rotating phase waves are 
generated in Eq. (1). The duration T of them is derived 
with Eq. (6) letting l(0) = l0 and l(T) = 0 as  
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By letting N be infinity, simpler forms of Eqs. (6) and (7) 
are given by  
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The duration of rotating phase waves thus increases 
exponentially with the initial pulse width.  

Figure 9 shows a semi-log plot of the duration T of 
phase waves against the initial pulse width l0 in a ring of 
21 oscillators (N = 21). Plotted are the results of computer 
simulation of Eq. (1) under Eq. (2) with l0 (1 ≤ l0 < N/2) 
instead of lh (closed circles), those of Eq. (4) with Eq. (3) 

(open circles) and Eq. (8) (lines). Although the results of 
the coupled map model (Eq. (4)) slightly differ from those 
of the original system (Eq. (1)), Equation (8) agrees with 
both simulation results.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Duration of phase waves vs initial pulse width l0.  
 
5. Conclusion  

 
Exponential transient phase waves in a ring of 

unidirectionally coupled parametric oscillators were 
shown. A coupled map model for them was also derived. 
The propagation and duration of phase waves were well 
described by a kinematical equation. This is the first 
report on exponential transient phase waves in coupled 
oscillators as far as the authors know. Since the coupling 
term used in this study is ad-hoc and artificial, however, a 
more physical model will be proposed and examined.  
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