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Abstract—This paper studies dynamics of the bifurcat-
ing neuron with two triangular inputs: the first input is
period T and the second input is period T/3. Repeat-
ing integrate-and-fire behavior between a threshold and the
base signal, the neuron can output various spike-trains. De-
riving one-dimensional map of spike phases, the dynamics
can be analyzed precisely. Especially, this paper analyzes
a variety of super-stable periodic spike-trains and related
bifurcation phenomena.

1. Introduction

The bifurcating neuron (BN, [1]) is a switched dy-
namical system inspired by spiking neurons. Repeating
integrate-and-fire dynamics between a periodic base signal
and a constant threshold, the BN outputs a spike-train. The
BN can be analyzed precisely by a one-dimensional map
of spike phases (Pmap). The analysis of BN is basic to
consider spike-based nonlinear dynamics and engineering
applications: image processing, digital communications,
analog-to-digital converters, neural prosthesis [2]-[5], etc.
Analysis of the BN is important not only as a fundamental
study nonlinear dynamical system, but also for engineering
applications [6].

This paper studies dynamics of the bifurcating neuron
with two periodic base signal inputs. The first input is a
triangular waveforms with period T and the second input is
a triangular waveforms with period T/3. For simplicity, we
consider a parameter range where the BN exhibits chaotic
spike-train if either the first or the second input is applied.
In this parameter range, if both the first and second inputs
are applied, the BN can have a variety of super-stable pe-
riodic spike-trains. We then derive the Pmap that is piece-
wise linear and includes segments with zero-slope. Using
the Pmap, we analyze the super-stale spike-trains and re-
lated bifurcation phenomena precisely.

For novelty of this paper, we note the following two
points. First, we have presented the BN with two triangular
base signal inputs and the BN exhibits chaos and super-
stable spike-trains. Second, we have derived the piecewise
linear Pmap including zero-slope segments. The Pmap en-
ables us to analyze the phenomena exactly.

2. Circuit model of bifurcating neuron

Figures 1 and 2 show a circuit model and dynamics of
the BN, respectively. Below a threshold VT , the capacitor
voltage v increases by integrating a constant current I > 0.
If v reaches VT , the BN outputs a spike Y(t) = E. The
spike closes a switch SW and v is reset to the periodic base
signal (B(t)) with period T . Repeating this behavior the BN
outputs spike-train Y(t). For simplicity, the inner resistors
are ignored (r1 →∞, r2 → 0) and the switching is assumed
to be ideal: v1 is reset instantaneously without delay. The
dynamics is described by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C

dv
dt
= I, Y(t) = −E for v(t) < VT

x(t+) = B(t+), Y(t+) = E if v(t) = VT

(1)

B(t) = K1B1(t) + K3B1(3t) + E0 , B1(t + T ) = B1(t) (2)

B1(t) =
{ −(A − 2)t/T for − d < t/T < d

A(t/T − 2d) + 2d for d < t/T < 1 − d (3)

where B(t) < VT .

Figure 1: Bifurcating neuron circuit model.

Figure 2: Bifurcating neuron dynamics.
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Using dimensionless variables and parameters:

τ =
t
T
, x =

v
VT
, ẋ =

dx
dτ
, y =

Y + E
2
,

k1 =
K1

VT
, k3 =

K3

VT
, a0 =

E0

VT
, s =

IT
CVT

(4)

Eqs. (1)-(4) are transformed into
{

ẋ = s for x < 1
x(τ+) = b(τ+) if x(τ) = 1 (5)

b(τ) = k1b1(τ) + k3b1(3τ) + a0, b1(τ + 1) = b1(τ) (6)

b1(τ) =
{ −(A − 2)τ for − d < τ < d

A(τ − 2d) + 2d for d < τ < 1 − d (7)

where ẋ ≡ dx/dτ. The base signal is characterized by a
parameters A and d. For simplicity, we assume

2 < A < 4, 0 < d < 0.5

In this paper, we consider three cases of the b(τ).

Case 1: The first component only (k1 = 1, k3 = 0, a0 = 0)

Case 2: The second component only (k1 = 0, k3 =
1
3 ,

a0 � 0)

Case 3: Two inputs (k1 = 1, k3 =
1
3 , a0 � 0)

It goes without saying that the theorem of superposition is
not valid in this nonlinear system.

Figure 3: Typical waveforms of BN. (T = 1[ms], C =
0.022[μF], r1 = 120.2[kΩ], r2 = 1.11[kΩ], VT = 1[V],
A = 4.0, d = 0.33, E0 = 0) (a)first component only (k1 = 1,
k3 = 0), (b)second component only (k1 = 0, k3 =

1
3 ), (c)two

inputs (k1 = 1, k3 =
1
3 ).

3. Experiments

In order to confirm typical phenomena, we have fabri-
cated a breadboard prototype of the BN. Figure 3 shows
typical phenomena. The BN exhibits chaos for B(t) = B1(t)
(first component only) or B(t) = B3(t) (second component
only). However, if B(t) = B1(t)+B3(t) then the BN exhibits
periodic waveform as shown in Fig. 3(c). That is, chaotic
behavior of each BN can be changed into periodic behavior
by the two inputs.

4. Spike-phase map

In order to analyzed the dynamics, we derive the Pmap
of the BN. Let τn denote the n-th spike position. The spike-
train is characterized by the spike positions. Since τn+1 is
determined by τn, we can define the spike-position map.

τn+1 = τn + (1 − b(τn))/s ≡ F(τn) (8)

Since F1(τ + 1) = F1(τ) + 1 is satisfied, we introduce the
phase variable θ1(n) = τ1 mod 1. Using this, we can define
the Pmap as shown in Fig. 4:

θn+1 = f (θn) ≡ F(θn) mod 1 (9)

Substituting k3 = 0 and a0 = 0 into Eq. (6), we obtain the
Pmap for the first component. Substituting k1 = 0 into Eq.
(6), we obtain the Pmap for the second component.

f (θn) =
{

aθ for − d < θ < d
−aθ + (1 + a)/2 for d < θ < 1 − d (10)

The shape of the Pmap depends on the shape of b(τ).
As the parameter varies, the shape of Pmap varies and BN
can exhibit various spike-trains. Using Eqs. (10)-(??), the
Pmap can be calculated precisely. Since the base signal
is piecewise linear, the maps are also piecewise linear and
precise numerical analysis is possible.

Figure 4: (a) Spike-position map (Smap), (b) Spike-phase
map(Pmap).
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5. Bifurcation phenomena

Using the Pmap, we consider basic bifurcation phenom-
ena. Figure 5 shows typical examples of Pmaps and or-
bits in the Cases 1 and 2. We can see that the BN exhibits
chaotic spike-trains in both Cases 1 and 2. Figure 6 shows
several Pmaps in Case 3 (two inputs). The BN exhibits pe-
riodic spike-trains, e.g., the fixed points in Fig. 6(a) means
periodic spike-train with period 1. These Pmaps show that
chaotic spike-trains in Cases 1 and 2 are changed into the
periodic spike-train in Case 3 (addition of two base signals
in Cases 1 and 2). Note that the piecewise linear Pmap in
Fig. 6 consists of several segments and slope of each seg-
ment is either 0, 2a, or −2a. If a periodic orbit hits the
branch with slope 0 then the periodic orbit is super-stable
and the BN generates a super-stable periodic spike-train
(SSPT).

Next, we consider bifurcation of SSPTs in Case 3. First
we fix a = 3, d = 0.33 and select the dc component a0 as
a control parameter. As a0 varies, the BN exhibits various
SSPTs as shown in Fig. 6. The BN exhibits SSPTs with
period 2, 3 and 4 as shown in Figs. 6(b), (c), and (d), re-
spectively. Figure 7 shows a bifurcation diagram of SSPTs
for a0. Note that the orbits of Pmap must hit a segment with
slope 0 and all the spike-trains are SSPTs. Figure 8 shows
parameter regions for SSPTs with period 1: a basic results
of the bifurcation analysis in the a0-a plane.

Figure 5: Pmap for a = 3, d = 0.33. (a) The first compo-
nent only (k1 = 1, k3 = 0), (b) The second component only
(k1 = 0, k3 = 1/3, a0 = 0.03), (c) (k1 = 0, k3 = 1/3, a0 =

0.84), (d) (k1 = 0, k3 = 1/3, a0 = 0.7).

Figure 6: Pmap for (k1 = 1, k3 = 1/3, a = 3, d = 0.33). (a)
a0 = 0.03, (b) a0 = 0.12, (c) a0 = 0.84, (d) a0 = 0.7.

Figure 7: Bifurcation diagram for (k1 = 1, k3 = 1/3, a = 3,
d = 0.33).

Figure 8: Parameter regions for super-stable periodic spike-
train with period 1. (k1, k3) = (1, 1/3), d = 1+a

4a
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6. Conclusions

We have studied dynamics of BN with two triangular
base signal inputs. If either input is applied, the BN ex-
hibits chaotic spike-train. If two inputs are applied, the
BN exhibits a variety of SSPTs. Using the piecewise lin-
ear Pmap including braches with slope 0, the SSPTs have
been analyzed precisely. Performing basic numerical ex-
periments, we have demonstrated typical SSPTs and re-
lated bifurcation phenomena. Future problems are many,
including analysis of rich bifurcation phenomena and ap-
plication to engineering problems.
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