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Abstract—This paper proposes a simplified region-

based coupled Markov Random Field (MRF) model for

coarse image region segmentation. We previously simpli-

fied the region-based MRF model with hidden phase vari-

ables for the same purpose, and proposed its VLSI imple-

mentation. However, the model was still complicated and

the layout area of its VLSI circuit was still large. In this pa-

per, we propose a further simplified model by using piece-

wise binary functions, and demonstrate its superior perfor-

mance to our previous model by numerical simulations.

1. Introduction

On the Basis of visual computational theories, coupled

Markov Random Field (MRF) models provide practical al-

gorithms and hardware implementation for detecting dis-

continuities in motion, intensity, color, and depth in im-

age scenes [2–6]. In the region-based coupled MRF mod-

els, hidden variables represent a label process. The hid-

den variables play a crucial role in detecting the discon-

tinuities. Even if an input image contains gradations, the

region-based models can extract closed regions from the

input image by a label process as shown in Fig. 1.

However, the region-based coupled MRF model has a

problem that solutions obtained from the gradient descend-

ing method are often trapped in local minima. In order

to overcome this problem, a region-based coupled MRF

model with hidden phase variables was proposed, and it is

shown that the neutral stability of the phase variables set-

tles a steady state at a global minimum [7].

We proposed the improved region-based coupled MRF

model with hidden phase variables for efficient coarse im-

age region segmentation and its VLSI implementation [8].

We designed a merged analog/digital CMOS circuit im-

plementing this model. However, the layout area of this

CMOS circuit is still large. Therefore, it is necessary to

simplify this model.

In this paper, we simplify and improve this model toward

its VLSI implementation, and apply it to the coarse image

region segmentation task. We show performance compari-

son results with our previous model [8].
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Figure 1: Image region segmentation by region-based cou-

pled MRF model.

2. Region-based coupled MRF models

2.1. Region-based coupled MRF model with hidden

phase variables

The coupled MRF model employs mutual coupling of

the intensity and label processes as shown in Fig. 2. The

interaction is achieved using the differences between state

values of neighboring pixels. The cost function of this

model is represented as follows [7]:

E( f , φ, d) =
1

2

∑

i

( fi − di)
2

+
λ

4

∑

i

{1 + cos(∆φ)}(∆ f )2

−
J

2

∑

i

cos(∆φ),

∆φ = φ j − φi,

∆ f = f j − fi (1)

where fi is the state value at the i-th node referred to as

the intensity process, φi is the phase as hidden variables

referred to as a label process, di the input value at the i-th

node, and λ and J the scale parameters.

In Eq. (1), the first term forces fi to be close to di. The

second term smoothes the gradient between fi and f j ac-

cording to the difference between the corresponding phase

variables. Phase variable φi also interacts with neighboring

phase variables and the corresponding state fi. The third

term is the constraint with respect to the phase variables.
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Figure 2: Neural network model of the region-based MRF.

The discretized algorithm for minimizing the cost func-

tion is represented as follows:

fi(t + 1) = fi(t)

+
∑

i

ε f

[

λ

{

1 + cos(∆φ)

2

}

∆ f − ( fi − di)

]

, (2)

φi(t + 1) = φi(t)

+
∑

i

εφ

2

{

J −
λ

2
(∆ f )2

}

sin(∆φ) (3)

where ε f and εφ are constants.

2.2. Our previous (old) model

In the above-mentioned model, it is difficult to optimize

the parameters λ and J, which determine the balance be-

tween image segmentation and smoothing, because the co-

efficient of the second term in Eq. (3) is a quadratic func-

tion of ∆ f . To overcome this problem, we previously pro-

posed an improved model [8]. The updating equations of

this model is described as follows:

fi(t + 1) = fi(t)

+
∑

i

h f

4

[

1 + cos(∆φ)

2
B − 4η( fi − di)

]

, (4)

φi(t + 1) = φi(t) +
∑

i

hφ

4
πA sin(∆φ) (5)

where h f , hφ, and η are constants, and coefficients A and B

are given by:

A =



















−1 if Q < ∆ f ≤ 1

1 if − Q ≤ ∆ f ≤ Q

−1 if − 1 ≤ ∆ f < −Q

B =



















1 if 0 < ∆ f ≤ 1

0 if ∆ f = 0

−1 if − 1 ≤ ∆ f < 0

where Q is the parameter that determines whether segmen-

tation or smoothing is dominant in the label process. The

piecewise binary coefficients are suitable for practical hard-

ware implementation.

It has been confirmed by numerical simulation of the

coarse image region segmentation task that this model is

superior to the original one expressed by Eqs. (2) and (3).

This model has the features that the number of clustered

regions is controlled by parameter Q, and that the image is

not clustered into too small regions.

2.3. Proposed (new) model

In hardware implementation, our previous model is still

complicated because both intensity and label processes

are expressed by the nonlinear functions. Therefore, we

change these nonlinear functions to piecewise binary func-

tions.

In the updating equations of our previous model ex-

pressed by Eqs. (4) and (5), both sin(∆φ) and (1+cos(∆φ)/2

are nonlinear. Instead of these functions, we use functions

S and C, respectively, as shown in Fig. 3.

Here, we set intervals α and β around the convergence

and divergence points. The updating amounts become zero

in these regions, so that the processes can be settled to the

steady state. The spatial resolution of both intensity and

label processes does not have to be high, because our pre-

vious model has features that the image is not divided into

too small regions. Therefore, we assumed that the intro-

duction of intervals α and β do not have a bad effect on the

processing results.

Next, we delete unnecessary terms in the updating equa-

tions of our previous model. In coarse image region seg-

mentation tasks, the intensity process does not necessarily

correspond to the input image pixel data. In fact, parame-

ter η that determines this effect is very small compared with

other terms in the previous model. Therefore, we set η = 0

in Eq. (4).

Based on these simplifications, we propose a new region-

based coupled MRF model. The updating equations in our

L MN M

O

P�Q

RR S

L MN M

O

T O

P�Q
U�V VV

W

Figure 3: Simplified functions S and C.
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proposed model are described as follows:

fi(t + 1) = fi(t) +
∑

i

h f

4
CB, (6)

φi(t + 1) = φi(t) +
∑

i

hφ

4
πAS , (7)

Coefficients A and B are the same as those in our previous

model, and functions S and C are given by:

S =



















1 if α ≤ ∆φ ≤ π − α

−1 if − π + α ≤ ∆φ ≤ −α

0 otherwise

C =

{

1 if − π + β ≤ ∆φ ≤ π − β

0 otherwise

The values of intervals α and β depend on the coefficients

of the updating amounts and the processing resolution. The

piecewise binary functions S and C (Fig. 3) as well as A

and B make the practical hardware implementation easier.

3. Numerical simulation results

We compared the performance of the new model pro-

posed in this paper and our previous (old) model by nu-

merical simulation.

3.1. Gradient limits in geometric figure

We evaluated the performance of the new model for de-

tection of discontinuities in the label process in terms of

gradient limits [5]. We used a geometric figure with a gra-

dation as an input image, as shown in Fig. 4. We normal-

ized input values di within [0,1] and set initial phases φi at

πdi. For comparison, we used the same parameters in both

models except Q. We show the results in Fig. 4. We con-

verted the values of the phase variables in the label process

into hue.

In our old model, the gradation region is divided into re-

gions whose number depends on parameter Q if Q = 0.1,

0.05 and 0.01. However, when Q = 0.001, the number of

clustered regions is almost the same as that when Q = 0.01.

Therefore, although the number of clustered regions is con-

trolled by parameter Q, the gradient region is not divided

into too small region even if Q is very small. In the new

model, the results are nearly the same.

As a result, we confirmed that the controllability of gra-

dient limits, which our old model has, still remains in the

new model.

3.2. Number of iterative calculations for image restora-

tion

We compared the performance of the new model and our

old model in terms of the number of iterative calculations

for image restoration (noise elimination) tasks. We used an

input image in which noise is added to a geometric figure
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Figure 4: Detection of discontinuities in (a) our old model

and (b) new model.

consisting of two regions, as shown in Fig. 5. We used the

same parameters in both models, and found the number of

iterations required for image restoration. The completion

of image restoration is defined as the timing when the re-

sult of sobel filtering shows only the boundary of the two

regions.

In our old model, the number of iterations required for

image restoration is about 5,000. Even in that case, the

edge of the boundary is not a straight line, which means

that smoothing of small regions is insufficient.

In the new model, the number of iterations required for

image restoration is about 300, which is more than ten

times smaller than that in our old model. Furthermore, the
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Figure 5: Iterations required for image restoration in (a)

our old model and (b) new model.
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Figure 6: Coarse image region segmentation in various images.

edge of the boundary is a straight line, which indicates a

superior image restoration ability.

These superior results are obtained from the feature that

the updating amount is fixed to the maximum value by in-

troducing the piecewise binary functions.

3.3. Coarse image region segmentation

We verified the coarse image region segmentation abil-

ity of the new model by using various images. We used

pictures shown in Fig. 6, which are often used for bench-

mark tests in image processing. All the parameters are also

the same in both models. From Fig. 6, as for smoothing

within small regions, the new model is superior to our old

model. Although the boundaries of the clustered regions

in the intensity process are often blurred, those in the label

process are clear, and therefore coarse region segmentation

can successfully be achieved.

4. Conclusion

In this paper, we proposed a simplified region-based cou-

pled MRF model with hidden phase variables toward its

VLSI implementation, and apply it to the coarse image re-

gion segmentation. We changed the nonlinear functions to

piecewise binary functions, and deleted unnecessary terms

in the updating equations of our old model. We demon-

strated from the numerical simulations that the proposed

simplified model not only retains the advantages of our old

model, but also improves the processing speed and the re-

gion segmentation ability. The proposed new model makes

VLSI implementation easier because of the simplicity of

the updating equations.
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