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Abstract—In engineering applications, many signals are non-
white (i.e., they are colored and have temporal structure) and
can be modeled as an L-order Markov process. However, the
existing sparse representation methods do not consider the L-
order Markov property of signals. To fill this gap, we propose
a new sparse representation framework: Firstly, we segment
(split) the available T samples into several frames, where the
length of each frame is L(1 ≤ L ≤ T ); secondly, to make the
estimated signals be smooth, we set an appropriate percentage
of overlapping between two neighboring frames (typically, 50%-
70% overlapping); finally, we perform sparse representation for
each frame. Under this framework, a modified-BP algorithm
is developed by L-order ℓpq-norm-like optimization, which can
indirectly exploit the L-order Markov property of sources and
achieve better results.

I. INTRODUCTION

Sparse representation has already found many applications

in electromagnetic and biomagnetic problems (EEG/MEG),

time-frequency representation, image processing, fault diag-

nosis, etc [1]–[3]. Mathematically, sparse representation can

be modeled as:

x(t) = As(t), t = 1, · · · , T, or X = AS, (1)

where X = [x(1), · · · , x(T )] ∈ R
m×T (T ≫ m) is a given

data (observation) matrix, A = [a1, · · · , an] ∈ R
m×n is a

given full-row rank basis matrix, S = [s(1), · · · , s(T )] ∈
R

n×T is an unknown matrix representing sparse sources or

hidden components, T is the number of available samples, m
is the number of observations, and n is the number of sources.

The main objective is to find the sparse solutions (sparse

sources) S satisfying equations (1). Matrix S is intended to

be as sparse as possible. We assume that each column of the

sparse solutions S has m or less nonzero elements [4].

Recently, many researchers have paid much attention on

sparse representation due to its importance. The ℓ1-norm

was first used to measure the sparsity of sources [5]–[7]

and the popular ℓ1-norm methods include linear program-

ming (LP) [5]–[8], shortest path decomposition (SPD) [7],

[9], etc [10], [11]. Later, the ℓ1-norm was extended to the

ℓ(p≤1)-norm-like diversity [2], [4], [10]–[13], and various

FOCal Underdetermined System Solvers (FOCUSS) were

developed [10], [11]. After this, M-FOCUSS was further

developed for multiple measurement vectors (MMV) [14],

in which the cost function is Jp(s(l), l = 1, · · · , L) =
∑n

i=1 (
∑L

l=1 |si(l)|
2
)p/2.

It should be mentioned that many signals in practice are not

white, but rather have temporal structure and usually can be

modeled as an L-order Markov process. For example, speech

signals usually can be well described as an L-order Markov

model. However, the L-order Markov property of signals is

not sufficiently discussed at all in sparse representation. Also,

many existing algorithms, such as LP, SPD and FOCUSS etc,

can not take advantage of this property.

In this paper, We develop several improved techniques

for sparse representation of L-order Markov signals: 1) A

new sparse representation framework is proposed; 2) Using

power mean, we also propose a new optimization criterion,

which can be considered to be a modified version of the

objective function of M-FOCUSS [14]. By the proposed

objective function, the estimated signals are smoother and

usually more physically plausible. Moreover, a modified basis

pursuit (BP) algorithm is proposed to optimize the objective

function, which outperforms the conventional minimizing ℓ1-

norm methods, FOCUSS and M-FOCUSS in terms of preci-

sion.

II. SPARSE REPRESENTATION BY ℓpq -NORM-LIKE

OPTIMIZATION

A. Probability model

Assume n original components s1, · · · , sn are mutually

independent1 and their absolute values |s1| , · · · , |sn| follow

one-sided generalized Gaussian distribution (one-sided GGD):

Pr (ρ; p, β) =
p

βΓ (1/p)
exp

(

−

(

ρ

β

)p)

, ρ ≥ 0; β > 0,

(2)

where 0 < p ≤ 2 and Γ(·) is Gamma function given

by Γ(x) =
∫ +∞

0
tx−1e−tdt. In practical applications, many

real-world signals follow or approximately follow the above

distribution [15], [16]: for example, generalized Gaussian

signals (with symmetrical PDF) and nonnegative signals (with

1For notational simplicity, the matrix model (1) X = AS is written in
vector format: x = As.
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asymmetrical PDF). As mentioned in [15], [16], p is the shape

parameter, and β is the scaling parameter. Generally speaking,

the smaller the parameter p is, the sparser the corresponding

signal is.

From (2), the joint PDF of |s1| , · · · , |sn| can be expressed

as

Pr (|s1| , · · · , |sn|) =
n
∏

i=1

p

βΓ (1/p)
exp

(

−

∣

∣

∣

∣

si

β

∣

∣

∣

∣

p)

=

(

p

βΓ (1/p)

)n

exp

(

−
1

βp

n
∑

i=1

|si|
p

)

.

(3)

Maximizing a posteriori probability (MAP) in (3), we have

ℓp-norm optimization problem:






min Jp(s) = min ‖s‖p
= min

n
∑

i=1

|si|
p

subject to : As = x

(4)

B. L-order ℓpq-norm-like optimization

The optimization problem (4) has been extensively dis-

cussed [4], [10], [11]. It is worth mentioning that many real

signals (e.g., speech signals) usually have L-order Markov

property. However, the L-order Markov information is not

considered at all in problem (4).

For this reason, instead of (4), we consider the following

L-order ℓpq-norm-like optimization problem:






min J(·; p, q) = min
s(l), l=1,··· ,L

n
∑

i=1

(
L
∑

l=1

|si(l)|
pq

)
1

q

As(l) = x(l), l = 1, · · · , L

(5)

where q ≥ 1. The power mean (PM) is implicitly incorporated

in (5) [17], [18].

Remark 1. For L nonnegative numbers y1, · · · , yL, their

q-PM is Mq(y1, · · · , yL) =
(

∑L
l=1 yq

l /L
)1/q

, where

the 1-PM M1(y1, · · · , yL) corresponds to the arith-

metic mean A(y1, · · · , yL) = (y1 + · · · + yL)/L and

lim
q→+∞

Mq(y1, · · · , yL) = max
l=1,··· ,L

{yl}. For any two numbers

q1 and q2 such that −∞ ≤ q1 ≤ q2 ≤ +∞, we have

Mq1
≤ Mq2

, where Mq1
= Mq2

if and only if y1 = · · · = yL

[17], [18]. The optimization problem (5) is obtained by sub-

stituting the arithmetic mean A(|si(1)|p , · · · , |si(L)|p) with

the q-PM Mq(|si(1)|p , · · · , |si(L)|p) in (4).

The minimum ℓ1-norm sparse representation is the special

case of problem (5) with the parameters q = 1, p = 1 or

L = 1, p = 1 [6], [7], [9], [19]. For L-order Markov signals,

more accurate and physically meaningful results than the

conventional ℓ1-norm estimations can be achieved by problem

(5). For example, the estimated sources are usually smoother

and more continuous, whereas the ℓ1-norm estimations are

relatively more random and without any constraints on the

temporal structure.

To take advantage of the L-order Markov property of

signals, the T samples in model (1) can be segmented into

T/L frames with frame length L (L ≪ T , e.g., L = 4).

TABLE I
SOME FUNCTION VALUES OF r(p)

p 0 0.2 0.4 0.6 0.8 1

r(p) 0 0.062937 0.23155 0.35624 0.44079 0.5

p 1.2 1.4 1.6 1.8 2 2.2

r(p) 0.5431 0.57556 0.60068 0.62057 0.63662 0.64978

In addition, we propose setting an appropriate percentage

of overlapping between two neighboring frames (typically,

50%-70% overlapping). Overlapping is helpful to make the

estimated source signals be smoother. Finally, we perform

sparse representation by for each frame. Next, we discuss how

to set the parameters L, p, q and the overlapping percentage.

C. Parameter setting

For PDF model (2), we can obtain its moment estimation

of parameter p as follows [15], [16]:

p̂ (ρ) = r−1
(

(Eρ)2
/

Eρ2
)

, (6)

where r−1(·) is the inverse function of r(x) =
[Γ(2/x)]2/[Γ(1/x) ·Γ(3/x)]. r(x) is monotonously increasing

in the internal (0, +∞) (see Fig.1). So the parameter p can

be uniquely estimated by solving nonlinear function (6) using

the bisection method. Also, we can roughly estimate p by

looking up Table I.
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Fig. 1. r(p) is monotonously increasing with p

In addition, by extensive simulations, we found that the

parameters L, q and the overlapping percentage can be em-

pirically set by calculating the autocorrelation coefficients of

the observed signals. For example, for the observed signal

x1(t), t = 1, · · · , T , we calculate the autocorrelation coeffi-

cients ζ(x1(t), x1(t−1)), · · · , ζ(x1(t), x1(t−L)) between the

observed signals and their time delays. If the autocorrelation

coefficients ζ(xi(t), xi(t − L0)), i = 1, · · · , m are still sig-

nificant (typically, larger than 0.02), it is better to set L ≥ L0.

If all these autocorrelation coefficients are very significant, we

can set a relatively big q (e.g., q = 8); typically we set q = 2.

In many situations we can set L = 4 with 50% overlapping

and much better performance can be achieved, especially when

the sources are very sparse.
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III. SPARSE REPRESENTATION BY MODIFIED-BP

Let A = [a1, · · · , an] be m× n (m ≤ n) basis matrix and

set N = {AB|AB is an m×m submatrix of A.}. Obviously

N contains Cm
n submatrices of A. We have As = ABsB +

ANsN = x, where AB contains m columns ai1, · · · , aim

of A; m × (n − m) matrix AN contains the corresponding

remaining column vectors of A; and sB and sN are rearranged

according to the corresponding order. In addition, we assume

that all m×m submatrices of A are invertible. Then, problem

(5) can be converted to the following optimization problem:

min
ŝ(l), l=1,··· ,L

n
∑

i=1

(

L
∑

l=1

|ŝi(l)|
pq

)1/q

, (7)

where ŝ(l) = [(ŝB(l))T , (ŝN (l))T ]T , ŝB(l) =

(A
(l)
B )−1x(l) and ŝN (l) = 0, l = 1, · · · , L, and

A
(l)
B ∈ N , l = 1, · · · , L.

Generally speaking, (7) is a combinatorial problem and is

NP-hard. Fortunately, we can reduce the complexity consider-

ably by choosing a small frame window, typically L ≤ 4, so

the computation complexity would be acceptable.

The solution of problem (7) has other interesting sparsity

properties: there are at most m nonzero entries in the vector

ŝ(l). We can solve problem (7) by basis pursuit2. When

parameter p is given, we have modified-BP algorithm for

problem (5):

1) (Set parameter L, q, and overlapping ratio. Typically,

L ≤ 5 to achieve reasonable computational complexity.

As mentioned above, we split T samples of the observed

signals x(t), t = 1, · · · , T into a series of frames having

frame length L.

2) Compute inverses of all m × m submatrices of A,

generate set N , and stack it. Similar to SPD [7], [9],

when applied to all samples t = 1, · · · , T , the inverses

of all m × m submatrices of A need to be computed

only once.

3) For each frame, search a solution satisfying (7) in N .

The modified-BP algorithm can be viewed as the generaliza-

tion of SPD [9]. In practice, parameter p is unknown. To

solve this problem, we can first set p = 1 and run either

above algorithm or alternatively FOCUSS to find a rough

estimation ŝ = (ŝ1, · · · ŝn)T for (4). Usually ℓ1-norm solution

is a first approximate (rough) solution [7] that but usually

will be imperfect. To obtain a more accurate solution, we can

estimate p from the rough estimation ŝ by equation (6) as

follows:

p̂ =
1

n
(p̂ (ŝ1) + · · · + p̂ (ŝn)) . (8)

After this, we substitute p̂ into (5) to more precisely estimate

s using above algorithm. In very sparse and underdetermined

cases, ℓp-norm solutions are usually more accurate than ℓ1-

norm ones.

2Since Chen and Donoho solved minimum ℓ1-norm problem by basis
pursuit [5], here we call above algorithm “modified basis pursuit (modified-
BP)”.

The algorithm is very fast and very precise, if the combi-

nation number Cm
n is not very large. We tested and compared

these algorithms for many signals and for many basis matri-

ces. Our experiments confirmed that the proposed algorithm

almost always gives more precise solutions. Sometimes, its

performance was remarkably better than that of the FOCUSS

algorithm, and sometimes only slightly better.

However, if Cm
n is very large (e.g., C40

100), the modified-BP

needs a lot of storage space to stack Cm
n inverse matrices. In

this case, FOCUSS, especially, M-FOCUSS is better.

IV. NUMERICAL EXPERIMENTS AND RESULT ANALYSIS

In this section, we compare the Modified-BP algorithm with

FOCUSS [11], [20] and M-FOCUSS [14]. The experiment is

conducted on a PC with an Intel Pentium 4 CPU 2.20GHz. The

SIR (Signal-to-Interference Ratio) is calculated to evaluate the

estimations:

SIR (ŝ) = 10 log10(s
2
/

(s − ŝ)
2
) [dB]. (9)

Usually, when SIR ≥ 15dB, the estimation is considered to be

acceptable.

Example: The four sources (65536 samples in the time

domain) are the same as those used in the experiment “Four-

Voices” in [9]. The mixing matrix was randomly generated as

follows:

A =





0.7798 −0.3703 0.1650 0.5585
−0.0753 0.8316 0.6263 0.3753
−0.6215 −0.4319 0.7619 −0.7398



 . (10)

Then, three mixtures were obtained by model (1). To satisfy

the sparseness assumption, we performed sparse representation

in the transform domain. As in [9], the short time Fourier

transform (STFT) with Hanning window was used and the

same parameters as the experiment ”FourVoices” in [9] were

taken: the window length of STFT was 2048, and hop distance

was d = 614. In total, we had 425984 samples in the transform

domain. After the sources were estimated in the transform

domain, we also reconstructed the estimated sources in the

same way as the experiment ”FourVoices” in reference [9].

Here, we found that the signals were not white. By calcula-

tion, the autocorrelation coefficients were ζ(x2(t), x2(t−1)) =
−0.6646, ζ(x2(t), x2(t− 2)) = 0.1836, ζ(x2(t), x2(t− 3)) =
−0.0386, ζ(x2(t), x2(t − 4)) = 0.0327 and ζ(x2(t), x2(t −
5)) = −0.0082. We set L = 4. Also we could determine

L = 4 by computing the autocorrelation coefficients of

two other observed signals, x1, x3, and their corresponding

delays. Since these autocorrelation coefficients are not very

significant, we set q = 2. Overlapping was set to 66.667%.

By rough estimation, we found p̂ = 0.1679.

From Table II, we can see that the proposed algorithm

considerably outperformed the ℓ1-norm solutions and M-

FOCUSS [14]. We performed many trials, in which the param-

eter p took values ranging from 0.1 to 1, and found that the

modified-BP algorithm worked best with 75% overlapping and

p = 0.4, which was a little larger than its true value 0.1679.

When p = 0.1679, the SIRs were 15.9499dB, 17.5057dB,
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16.8212dB, and 20.6749dB. M-FOCUSS obtained the best

SIRs (14.6311dB, 16.1179dB, 15.5644dB and 19.6240dB)

when the parameters were set to L = 7, p = 0.7.

TABLE II
COMPARISON OF PERFORMANCE FOR p̂ = 0.1679; NOISE IS FREE.

SIRs (dB)

ℓ1-norm solutions 11.3125 12.7976 12.3106 16.3585

M-FOCUSS 13.3211 14.7750 13.3805 18.4096

The proposed algorithm 15.4856 17.0709 16.3693 20.5713

In this example, M-FOCUSS was faster than the modified-

BP algorithm. For the modified-BP algorithm, It cost 2707.6

seconds. After about 50 iterations, M-FOCUSS found the

solution. It took 705.1719 seconds.

Moreover, we also set L = 1 to re-test the modified-BP

algorithm and compared it with FOCUSS, where the parameter

p was taken value from 0.1 to 1. We found that the results were

not as good as when L = 4. The SIRs of the estimations are

shown in Table III.

TABLE III
COMPARISON OF PERFORMANCE OF FOCUSS AND THE MODIFIED-BP

FOR p̂ = 0.1679 AND NOISE IS FREE.

p 1.0 0.8 0.6 0.4 0.2 0.1679

FOCUSS

SIR(ŝ1) 11.31 11.11 10.63 10.31 10.17 10.18
SIR(ŝ2) 12.80 12.59 12.11 11.79 11.66 11.66
SIR(ŝ3) 12.31 12.11 11.70 11.41 11.27 11.28
SIR(ŝ4) 16.36 16.16 15.72 15.44 15.34 15.34

Modified-
BP

SIR(ŝ1) 11.31 12.64 13.70 13.93 13.49 13.50
SIR(ŝ2) 12.80 14.10 15.23 15.49 15.10 15.11
SIR(ŝ3) 12.31 13.58 14.65 14.85 14.40 14.40
SIR(ŝ4) 16.36 17.63 18.71 18.98 18.59 18.59

Next, we test the robustness of the modified-BP algorithm.

Some white Gaussian noise was added to the mixtures with

SNR=20dB. The parameter setting was the same as above:

L = 4, p̂ = 0.1679, q = 2 and overlapping was 66.667%.

Table IV shows the SIRs of the estimated sources, where we

can see that the performance of the modified-BP algorithm is

better than both M-FOCUSS and minimum ℓ1-norm solution.

TABLE IV
COMPARISON OF PERFORMANCE FOR DIFFERENT ALGORITHMS

p̂ = 0.1679, SNR=20DB.

SIRs (dB)

ℓ1-norm solutions 10.9281 12.0371 11.6393 14.3458

M-FOCUSS 12.7266 13.5789 13.1990 15.7021

Modified-BP 14.4028 15.0861 14.5127 16.5016

V. CONCLUSIONS

Sparse representation of multiple vector measurement was

discussed in this paper. A new framework was proposed for

this problem: Firstly, the T samples are split into a serial

of frames with frame length L(1 ≤ L ≤ T ); secondly, to

make the estimated signals be smooth, we set an appropriate

percentage of overlapping between two neighboring frames

(typically, 50%-70% overlapping); finally, we perform sparse

representation for each frame. The proposed framework is

particularly suitable for L-order Markov signals. Under this

framework, a modified-BP algorithm was developed. In addi-

tion, since the modified-BP algorithm is based on the BP, it

cannot avoid combinatorial explosion when L is very large. So

further research is required to develop more computationally

efficient and faster algorithms for large scale problems in the

future. Fortunately, we can achieve better results by modified-

BP algorithm than minimum ℓ1-norm solutions, even for a

relatively small frame length L (e.g., L = 3 or L = 4).
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