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Abstract—Almost periodic oscillations are often gener-
ated in three-phase circuits. In this report, we propose a
method to analyze the almost periodic oscillations in three-
phase circuits by extending the shooting method, which is
used for the analysis of periodic oscillations. We formu-
late the almost periodic oscillations using the Poincare map
from closed curve to closed curve. Our approach gives a
new representation of invariant tori.

1. Introduction

Symmetrical three-phase circuits in Fig.1 are basic mod-
els of non-linear electric power systems for no load or light
load. Fundamental harmonic and subharmonic periodic os-
cillations and almost periodic oscillations have been ob-
served in three-phase circuits for the nonlinear nature of
inductors [1, 2, 3, 4]. Especially, the almost periodic oscil-
lations are generated on a widespread region in parameter
spaces.

As useful tools for the analysis of the periodic oscilla-
tions, we have the harmonic balance method [5] and the
shooting method [6]. The shooting method solves the
fixed-point problem of the Poincare map from point to
point. Until now, many methods have been proposed also
for analyzing the almost periodic oscillations [2, 7, 8, 9,
10, 11, 12]. The first approach approximates the almost
periodic oscillations with the Fourier coeffcients [2, 7, 9].
The second approach represents the almost periodic oscil-
lations which lead to a specific invariance equation by a
natural parametrisation [8]. In the third approach, the al-
most periodic oscillations are computed as a fixed point of
a generalized Poincare map [10, 11, 12]. We propose a new
method in the third approach.

This paper proposes a method of obtaining the almost
periodic solutions by extending the shooting method. Al-
most periodic oscillations are represented by invariant tori
and thier Poincare sections are closed curves. Moreover we
approximate the closed curve with Fourier coefficients. We
formulate the determining equation to be able to use the
shooting method. Our approach regards the analysis of the
almost periodic oscillations as the fixed-point problem of
the Poincare map from closed curve to closed curve.
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Figure 1: Three-phase circuit

2. Equation of three-phase circuit

Figure 1 illustrates the symmetric three-phase circuit,
which consists of delta-connected nonlinear inductors, ca-
pacitors, resistors and balanced voltage sources. All in-
ductors, capacitors, resistors and voltage sources are same
characteristics.

The circuit equation which is normalized by the reso-
nance frequency is written by{

ψ̇abc = eabc− Aabcuabc− Rabciabc

u̇abc = AT
abciabc

(1)

ψabc := (ψa, ψb, ψc)T, uabc := (ua,ub,uc)T,

Aabc :=

 0 1 −1
−1 0 1
1 −1 0

 ,
eabc := Eabc

(
sin(ωt), sin(ωt − 2π

3
), sin(ωt +

2π
3

)

)T

,

iabc := (i(ψa), i(ψb), i(ψc))T, Rabc := AT
abcAabcR,

i(ψ) = ψ3, (2)

whereψabc is the scaled magnetic flux vector,uabc is the
scaled capacitor voltage vector.Eabc is the scaled voltage
source,R is the scaled delta-connected resistance,ω is the
scaled frequency. We approximate the magnetizing charac-
teristic i(ψ) in Eq.(2).
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Figure 2: Waveforms of the periodic oscillation and fixed
point of Poincare map
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Figure 3: Waveforms of the almost periodic oscillation and
approximate invariant closed curve

In order to simplify Eq.(1), we use the 0αβ transform
defined by

ψ0αβ =W0αβψabc, u0αβ =

 1 0 0
0 0 1
0 −1 0

W0αβuabc,

ψ0αβ := (ψ0, ψα, ψβ)T, u0αβ := (u0,uα,uβ)T,

W0αβ :=


1√
3

1√
3

1√
3

2√
6
− 1√

6
− 1√

6
0 1√

2
− 1√

2

 .
Then, this circuit satisfies{ √

3ψ0 = ψa + ψb + ψc = const,√
3u0 = ua + ub + uc = const.

(3)

Equation (3) shows that the dimension of Eq.(1) decreases
from 6 to 4. Thus, we can represent Eq.(1) by the following
form:

dx
dτ
= f (x, τ), x :=

(
ψαβ
uαβ

)
, τ = ωt. (4)

ψαβ := (ψα, ψβ)
T, uαβ := (uα,uβ)

T,

3. Formulation of almost periodic oscillation

3.1. Shooting Method of periodic oscillation

The shooting method is a useful tool for obtaining the
solution of the periodic oscillation. We define a periodic
solution x(τ) as integrating Eq.(4) from the initial state
x(0) = x0 over the interval [0,T]. Then, the Poincare map
T : Rn 7→ Rn for periodT is defined by

T[x0] := x(x0,T) = x0 +

∫ T

0
f (x, τ)dτ. (5)

The periodic solution satisfies

x0 = T(x0). (6)

To obtain the periodic solution, we solve

F(x0) := x0 − T(x0) = o. (7)

Figure 2 illustrates an example of the periodic oscilla-
tion. The left figure shows the flux waveforms of the pe-
riodic oscillation, and as shown in the right figure we con-
sider the periodic solution is formulated by the fixed-point
problem of the Poincare map from point to point.

3.2. Almost Periodic Oscillation

Figure 3 illustrates an example of almost periodic oscil-
lation. The flux waveforms of the almost periodic oscilla-
tion are shown in the left figure, and the Poincare map for
ψα andψβ is shown in the right figure.

As shown in the right figure, the Poincare map ofψ can
be expressed by the invariant closed curve in the almost
periodic oscillation. In other words, almost periodic oscil-
lations are represented by invariant tori and the cross sec-
tion is a closed curve. We consider a method for obtaining
the solution of the almost periodic oscillation as the fixed-
point problem of the Poincare map from the closed curve
to the closed curve. We define the invariant closed curve
as x̄(θ) : T1 7→ R4, whereθ is a normalized phase andT1

denotes 1-torus.
Extending Eq. (7) for the initial valuex0 of a periodic

oscillation to the almost periodic oscillation, we describe
the condition ofx̄(θ) by

x̄(θ) − T′(x̄(θ)) = o. (8)

This equation means that the mapsT′ preserves the closed
curvex̄(θ).

To represent the closed curve efficiently, we use the
Fourier series expansion. We define the determining equa-
tion as

F(X̄(k)) := X̄(k) − FT′(F −1X̄(k)) = o, (9)

where X̄(k) represents the Fourier coefficients of k-th
higher components.

We describe a method to obtain the real vector of the
Fourier series in the following section 3.3. and a method
to calculate the Poincare map for the closed curve in the
following sections 3.4 and 3.5.
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3.3. Fourier series expansion of closed curve

In order to characterize the almost periodic oscillations,
we approximatēx(θ) by truncated Fourier series expansion
with K frequency components.

In this case the closed curvēx(θ) = (ψ̄α, ψ̄β, ūα, ūβ)T is
represented by

ψ̄α(θ) = Ψα,0 +
K∑

k=1

(Ψα,c,k cos(kθ) + Ψα,s,k sin(kθ))

ψ̄β(θ) = Ψβ,0 +
K∑

k=1

(Ψβ,c,k cos(kθ) + Ψβ,s,k sin(kθ))

ūα(θ) = Uα,0 +

K∑
k=1

(Uα,c,k cos(kθ) + Uα,s,k sin(kθ))

ūβ(θ) = Uβ,0 +

K∑
k=1

(Uβ,c,k cos(kθ) + Uβ,s,k sin(kθ))

(10)

Ψi, j := (Ψi, j,1,Ψi, j,2, · · · ,Ψi, j,K)T, (i = α, β), ( j = c, s)

Ui, j := (Ui, j,1,Ui, j,2, · · · ,Ui, j,K)T, (i = α, β), ( j = c, s)

Ψα := (Ψα,0,ΨT
α,c,Ψ

T
α,s)

T, Ψβ := (Ψβ,0,ΨT
β,c,Ψ

T
β,s)

T,

Uα := (Uα,0,UT
α,c,U

T
α,s)

T, Uβ := (Uβ,0,UT
β,c,U

T
β,s)

T.

Equation (10) shows that the invariant closed curvex̄(θ) is
approximated by the real vectorΨα,Ψβ,Uα,Uβ ∈ R2K+1.

However, the invariant closed curvēx(θ) has arbitrary
property of phase shift:

x̄(θ) = x̄(θ + ∆θ). (11)

We normalize the phase shift by

Ψα,c,1 = 0. (12)

RemovingΨα,c,1 fromΨα, we defineX ∈ R4(2K+1)−1

X := (Ψ′Tα,Ψ
T
β ,U

T
α,U

T
β )T, Ψ′Tα := (Ψα,0,Ψ′

T
α,c,Ψ

T
α,s)

T,

Ψ′α,c := (Ψα,c,2,Ψα,c,3, · · · ,Ψα,c,K)T.

3.4. Poincare map

As the closed curve is the continuous function ofθ, we
discretize the invariant closed curvēx(θ) to calculate the
Poincare map. We divide the invariant closed curvex̄(θ)
into M ∈ Z parts forθ:

x̄D = (x̄(θ0)T, x̄(θ1)T, · · · , x̄(θM−1)T)T, (13)

θm =
2π
M

m, (m= 0,1, · · · ,M − 1)

As we can get the discretized closed curvex̄D, we can
calculate the Poincare map from̄xD to x̄′D by Eq. (5):

T[ x̄(θm)] := x(x̄(θm),T) = x̄(θm) +
∫ T

0
f (x, τ)dτ, (14)

x̄′D := (T[ x̄(θ0)]T,T[ x̄(θ1)]T, · · · ,T[ x̄(θM−1)]T)T.

normalization
Figure 4: Example of the normalization using arc-length
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Figure 5: Linear approximation using arc-length

3.5. Normalization of θ

We assume that theθ of x̄D is normalized by arc length.
After calculating the Poincare map, parameterθ has been
changed. Then, the discretized closed curvex̄D contains
arbitrary property in Fig. 4.

We normalize the closed curvēx′D using the arc length.
We define a part lengthl as

l =
L
M

, (15)

L =
M−2∑
i=0

||x̄′D(θi) − x̄′D(θi+1)||2 + ||x̄′D(θM−1) − T(x̄′D(θ0))||2,

l =

{
||x̄(N)(θi) − x̄(N)(θi+1)||2 (i = 0,1, · · · ,M − 2)
||x̄(N)(θM−1)) − x̄(N)(θ0)||2

x̄(N)
D := (x̄(N)(θ0)T, x̄(N)(θ1)T, · · · , x̄(N)(θM−1)T)T,

whereL is the total length of the closed curvēx′D, andx̄(N)
D

is the normalized closed curve.
We approximate the distance from pointx̄′D(θi) to point

x̄′D(θi+1) by piece-wise line, and we use the interior divi-
sion as shown in Fig. 5.

3.6. Algorithm

We show the algorithm to define the determining equa-
tion F(X) of almost periodic oscillations using the func-
tions previously described.

1. We construct the approximated closed curvex̄(θ) by
the Fourier series from the real vectorX.
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2. We discretize the closed curvēx(θ) by θm and obtain
x̄D which is the series ofM points.

3. We calculatēx′D using the Poincare map.

4. We calculatēx′(N)
D by the arc-length normalization.

5. We calculateX(N) by Fourier series expansion from
x̄′(N)

D .

As a result, we define the determining equation of almost
periodic oscillations by

F(X) = X − X(N) (16)

4. Example

We analyze the almost periodic oscillation using the pro-
posed method. We set the scaled resistanceR = 0.06,
the scaled frequencyω = 7.0, the scaled voltage source
E = 3.0, the maximum orderK = 3,6 andM = 64.

Moreover, we use the Homotopy method [13] to solve
Eq. (17).

Figure 6 illustrates the Poincare map obtained by Runge-
Kutta method and the proposed method. The difference
between the proposed method and Runge-Kutta method is
the effect of approximation by Fourier series expansion. In
this case, despiteK = 3 we can approximate the almost
periodic oscillation .

5. Conclusion

We proposed a method for calculating the almost peri-
odic oscillations by extending the shooting method. We
defined the determining equation of almost periodic oscil-
lations by the Poincare map from closed curve to closed
curve. We represented the closed curve by the Fourier se-
ries expansion and formulated the determining equation to
be able to use the shooting method. We gives a new repre-
sentation of invariant tori.
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