2011 International Symposium on Nonlinear Theory and its Applications
NOLTA2011, Kobe, Japan, September 4-7, 2011

ey

Analysis of Almost Periodic Oscillations in Three-Phase Circuit
Using Shooting Method

Rikiya Kawaguchi and Takashi Hisakado

tDepartment of Electrical Engineering, Kyoto University
Kyotodaigakukatsura Nisikyo, Kyoto, 615-8510 Japan
Email: kawaguchi@circuit.kuee.kyoto-u.ac.jp, hisakado@kuee.kyoto-u.ac.jp

Abstract—AImost periodic oscillations are often gener-
ated in three-phase circuits. In this report, we propose a
method to analyze the almost periodic oscillations in three-
phase circuits by extending the shooting method, which is
used for the analysis of periodic oscillations. We formu-
late the almost periodic oscillations using the Poincare map
from closed curve to closed curve. Our approach gives a
new representation of invariant tori.

1. Introduction PE—

1(¢k)
Symmetrical three-phase circuits in Fig.1 are basic mod-

els of non-linear electric power systems for no load or light

load. Fundamental harmonic and subharmonic periodic os-

cillations and almost periodic oscillations have been ob-

served in three-phase circuits for the nonlinear nature of Equation of three-phase circuit

inductors [1, 2, 3, 4]. Especially, the almost periodic oscil-

lations are generated on a widespread region in parameteiFigure 1 illustrates the symmetric three-phase circuit,

spaces. which consists of delta-connected nonlinear inductors, ca-
As useful tools for the analysis of the periodic oscillaPacitors, resistors and balanced voltage sources. All in-

tions, we have the harmonic balance method [5] and tH&lictors, capacitors, resistors and voltage sources are same

shooting method [6]. The shooting method solves theharacteristics.

fixed_point pr0b|em of the Poincare map from point to The circuit equation which is normalized by the reso-

point. Until now, many methods have been proposed aldtnce frequency is written by

for analyzing the almost periodic oscillations [2, 7, 8, 9,

Figure 1: Three-phase circuit

10, 11, 12]. The first approach approximates the almost { Yape = Cabe~ Aabclabe — Rabdabe 1)
periodic oscillations with the Fourier cfieients [2, 7, 9]. Uabe = Agpdabe

The second approach represents the almost periodic oscil- Wape := Wa Wb, We)', Uabe := (Ua, Up, Ug) T,

lations which lead to a specific invariance equation by a 0o 1 -1

natural parametrisation [8]. In the third approach, the al- Ape=| -1 0 1 ]

most periodic oscillations are computed as a fixed point of 1 -1 0

a generalized Poincare map [10, 11, 12]. We propose a new -

method in the third approach. ape = Eabc(sin(wt),sin(wt _ E),sin(wt n 2_”)) i
This paper proposes a method of obtaining the almost 3 3

periodic solutions by extending the shooting method. Al-  iabc:= ((#a), i), i(¥c))T, Rabc = AlpcAandR,

most periodic oscillations are represented by invariant tori i) = y°, )

and thier Poincare sections are closed curves. Moreover we

approximate the closed curve with Fourier fitments. We wherey,,,. is the scaled magnetic flux vectar. is the

formulate the determining equation to be able to use thecaled capacitor voltage vectdgy is the scaled voltage

shooting method. Our approach regards the analysis of teeurce R is the scaled delta-connected resistaaces the

almost periodic oscillations as the fixed-point problem o$caled frequency. We approximate the magnetizing charac-

the Poincare map from closed curve to closed curve. teristici(y) in Eq.(2).
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*  Poicare map 3. Formulation of almost periodic oscillation

Va 2,
OW\/WWWW i 3.1. Shooting Method of periodic oscillation
,%0 RS S | The shooting method is a useful tool for obtaining the
‘ " Poichre map' i 5 1 solution of the periodic oscillation. We define a periodic
Ve ab i solution x(r) as integrating Eq.(4) from the initial state
or i X(0) = Xo over the interval [OT]. Then, the Poincare map
T R RS T T : R" — R" for periodT is defined by
b 2 24 26 28 30 Va

time (s)

T
T[Xo] := X(Xo, T) = Xo +fo f(x,7)dr. (5)

Figure 2: Waveforms of the periodic oscillation and fixedThe periodic solution satisfies

point of Poincare map

Xo = T(Xo). (6)
. ‘ ‘ To obtain the periodic solution, we solve
. Poincare map
"’“37 Jf ] F(Xo) := Xo = T(Xo) = 0. (7)
o ©
2l o *o ] Figure 2 illustrates an example of the periodic oscilla-
- ‘ ‘ ‘ LAY o ] tion. The left figure shows the flux waveforms of the pe-
}0 40 60 30 0 o . A . . .
* Poincarc map | L8 o riodic oscillation, and as shown in the right figure we con-
Zal 1T % o | sider the periodic solution is formulated by the fixed-point
g 2 %0009 7 problem of the Poincare map from point to point.
- ] 2 -1 0 1 2
30 0 ‘ 80 Ve 3.2. Almost Periodic Oscillation

time (65())
Figure 3 illustrates an example of almost periodic oscil-
Figure 3: Waveforms of the almost periodic oscillation angation. The flux waveforms of the almost periodic oscilla-
approximate invariant closed curve tion are shown in the left figure, and the Poincare map for
Yo andyy is shown in the right figure.
As shown in the right figure, the Poincare mapofan
be expressed by the invariant closed curve in the almost

In order to simplify Eq.(1), we use theof transform periodic oscillation. In other words, almost periodic oscil-

defined by lations are represented by invariant tori and the cross sec-
tion is a closed curve. We consider a method for obtaining
1 0 O X - o .
Vo, = Woush Uos=| 0 0 1 |Wostias the solution of the almost periodic oscillation as the fixed-
Oap = H0afFabo “0op 0 -1 0 afi-abe point problem of the Poincare map from the closed curve

. . to the closed curve. We define the invariant closed curve
Youp = (Y0 Yas¥ip) " Uoap = (Uo, Uas Ug) asx(0) : T* —» R* whered is a normalized phase arid

4 11 denotes 1-torus.
W = f _‘/i _\/i Extending Eq. (7) for the initial valugg of a periodic
0af - ‘g A oscillation to the almost periodic oscillation, we describe
V2 V2 the condition ofx(6) by
Then, this circuit satisfies x(6) — T'(x(6)) = o. (8)
This equation means that the mapspreserves the closed
{ V3o = a+ U + Y = cONst (3) curvex(o).
V3Up = Ua+ Up + U = const To represent the closed curvdiieiently, we use the

) . ) Fourier series expansion. We define the determining equa-
Equation (3) shows that the dimension of Eq.(1) decreasggp, as

from 6 to 4. Thus, we can represent Eq.(1) by the following

form: FIX(K) = X() - FT(F X)) =0 (9)
q where )?(k) represents the Fourier dfieients of k-th
ax _ f(x,7), X:= ('/’dﬁ), T =wt. (4) higher components.
dr Uoy We describe a method to obtain the real vector of the
Yop = (zp(,,wﬁ)T, Uog = (Ua, uﬁ)T, Fourier series in the following section 3.3. and a method

to calculate the Poincare map for the closed curve in the
following sections 3.4 and 3.5.

-213-



3.3. Fourier series expansion of closed curve

In order to characterize the almost periodic oscillations,
we approximate(d) by truncated Fourier series expansion
with K frequency components. o

In this case the closed curvél) = (Yo, g, Un, Ug)" iS
represented by

normalization

K
V() = Yoo+ > (Pack COSD) + Yo sk SiN(6))
szl Figure 4. Example of the normalization using arc-length
Up(0) = Wpo + ) (PpckCOSED) + Wy sk Sin(ko))
k=1

K (10) T
Ua(6) = U + ) (Unck COSED) + U sk Sin(ke) '
k=1

T M(x(80))

K
Us(6) = Upo + ) (UpckcoSEd) + Up sk sin(ks))
k=1

Wij = (Wi Wi, Yigk)', (=a.p).(j=c9)
Uij = (Uij1.Uij2, -, Uijx)", (i=a.B).(j=cs)
¥, = (\Pa,Oa \I’(-I;,C’ ‘Pl,s T’ ‘Pﬁ = (\PB,O’ ‘I’g,c’ ‘I’;,S)T’

Uy = (U0, UL, UT )T, Up 1= (Ugo, Ug,c, UE’S)T. Figure 5: Linear approximation using arc-length
Equation (10) shows that the invariant closed cut{® is
approximated by the real vectt¥,, ¥z, U,, Ug € R?K+1,

However, the invariant closed curv€d) has arbitrary
property of phase shift: We assume that theof Xp is normalized by arc length.
After calculating the Poincare map, parametdras been

3.5. Normalization of 8

X(8) = X(6 + A6). (11) changed. Then, the discretized closed cuxgecontains
We normalize the phase shift by arbitrary property in Fig. 4. _
We normalize the closed curvép using the arc length.
Y41 =0. (12) We define a part lengthas
Removing¥, .1 from ¥, we defineX e R*@<+1)-1 | = L (15)
=N
Xi= (WL YLULUDT, W] i= (Yoo V. ¥l M-2
Vo oi= (Paco Pacs s Pack)'- L= ) IIXp(6) X p(i+1)ll2 + [IX p(Om-1) — T(X 5(60))ll2,
’ ” ” ” i=0
3.4. Poincare map = [ IxE) - x®@)l (=01, .M-2)
. . . XN (@n-1)) = XN (60)Il2
As the closed curve is the continuous functiorgpfve N (o) (T SN) (T ) _—
discretize the invariant closed curxés) to calculate the Xp = (X(60) ", XV (01) -+, X (O-1))
Poincare map. We divide the invariant closed cux(e) ) N
into M € Z parts fore: whereL is the total length of the closed curi,, andx{”
is the normalized closed curve.
Xp = (X(60)", X(61)7, - - -, X(6m-1)N)T, (13) We approximate the distance from poiip(6;) to point
2r X'p(6i+1) by piece-wise line, and we use the interior divi-
Om = v (m=0.1,---.M-1) sion as shown in Fig. 5.

As we can get the discretized closed curgg we can .
calculate the Poincare map fraxg to X’p by Eq. (5): 3.6. Algorithm
We show the algorithm to define the determining equa-

T

T[X(6m)] := X(X(6rn), T) = X(6m) +f f(x, 7)dr, (14) tion F(X) of almost periodic oscillations using the func-
0 tions previously described.

X'p = (TIX(E)] T, TIXOI", -~ T[X(Om-2)]")"-

1. We construct the approximated closed cur¢é) by
the Fourier series from the real vectr
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. We discretize the closed curvé&d) by 6, and obtain

Xp which is the series ol points.

. We calculatedp using the Poincare map.
. We calculate?’(DN) by the arc-length normalization.

. We calculateX™™) by Fourier series expansion from

w7 (N)
X D -

As a result, we define the determining equation of almost
periodic oscillations by

F(X) = X - XN (16)

4. Example

We analyze the almost periodic oscillation using the pro-

posed method. We set the scaled resistaRce 0.06,

Figure 6: The invariant closed curve by the

Runge-Kutta
4 Proposed method (K=3)
* Proposed method (K=6) 1

proposed

the scaled frequency = 7.0, the scaled voltage source method and Runge-Kutta method
E = 3.0, the maximum ordeiK = 3,6 andM = 64.
Moreover, we use the Homotopy method [13] to solve

Eqg. (17).
Figure 6 illustrates the Poincare map obtained by Runge-

(5]

Kutta method and the proposed method. Th&edénce
between the proposed method and Runge-Kutta method ig] T.J. Aprille and T. N. Trick: “Steady-state analysis of
the dfect of approximation by Fourier series expansion. In
this case, despitd = 3 we can approximate the almost
periodic oscillation .

[7]

5. Conclusion

We proposed a method for calculating the almost peri—[8]
odic oscillations by extending the shooting method. We
defined the determining equation of almost periodic oscil-
lations by the Poincare map from closed curve to closed
curve. We represented the closed curve by the Fourier sg9]
ries expansion and formulated the determining equation to
be able to use the shooting method. We gives a new repre-
sentation of invariant tori.
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