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Abstract—This paper studies the chaotic dynamics of
the manifold piecewise liner system on the cylinder-type
phase space. This system is defined by second order con-
tinuous flow with hysteresis switching. Since the phase
space is cylinder-type, the trajectories do not diverge and
the system can generate super-expanding chaos character-
ized by a very large positive Lyapunov exponent. Using the
piecewise linear 1D return map, generation of the super-
expanding chaos can be analyzed theoretically.

1. Introduction

The manifold piecewise linear system (MPL) is a sim-
ple switched dynamical system that can generate chaotic
attractors [1]-[3]. The MPL is defined by a second order
piecewise linear system and hysteresis switching. In the
history of autonomous chaotic systems, the MPL has been
recognized as an important example because of the follow-
ing facts. First, the dynamics is integrated into a 1D piece-
wise linear return map and the chaos generation [4] [5] can
be proved theoretically. Second, the MPL can be imple-
mented by a simple test circuit and chaos generation can
be confirmed experimentally. Third, the MPL has been ap-
plied to engineering systems: communication systems, sig-
nal processor, radar systems, and particle swarm optimizers
[6]-[10].

This paper studies the cylinder manifold piecewise linear
system (CMPL). The CMPL is defined by a second-order
piecewise linear system and hysteresis switching. The ma-
jor difference from the MPL is the the CMPL is defined
on the cylinder-type phase space. The MPL is defined in
the rectangular coordinate phase space. The dynamics of
the CMPL is integrated into a piecewise linear 1D return
map and chaos generation can be guaranteed theoretically.
Especially, it is shown that the CMPL can generate super-
expanding chaos characterized by a very large Lyapunov
exponent. The MPL cannot generate the super-expanding
chaos.

Results of this paper can contribute to classification of
chaotic phenomena and its application to engineering sys-
tems. Preliminary results can be found in [11] [12].

2. Manifold Piecewise Linear System

In this section, as a preparation, we recall the MPL pre-
sented in [1]. The MPL is defined by the following second
order piecewise linear system and hysteresis switching:

ẍ − 2δẋ + x =

{
1 (+)
0 (−)

(1)

where x denotes the dimensionless state variable, τ denotes
the dimensionless time, and ẋ ≡ dx

dτ . In order to define the
switching rule, we divide the x-axis L into two half lines:

x ≡ (x, ẋ), L ≡ L+ ∪ L−

L+ ≡ {x | x ≥ Th, ẋ = 0}, L− ≡ {x | x < Th, ẋ = 0}
Switching rule of the MPL: Let the right hand side of Eq.
(1) be either (+) or (−) at τ = 0. The right hand side of Eq.
(1) is switched from (+) to (−) if a trajectory hits L−. The
right hand side of Eq. (1) is switched from (−) to (+) if a
trajectory hits L+ (see Fig. 1).

The MPL is characterized by three parameter: the damp-
ing δ, the equilibrium point p, and the switching threshold
Th. For simplicity, we assume the following case in this
paper:

0 < δ < 1, (ω ≡
√

1 − δ2), p ∈ {0, 1}, Th = 0.5 (2)

In this case, Eq. (1) has unstable complex characteristic
roots δ ± jω. As shown in Fig. 1, the trajectories rotate
divergently around equilibrium points p ≡ {0, 1}. If the tra-
jectory hits negative x-axis (L−) then the equilibrium point
is switched from 1 to 0. If the trajectory hits positive x-axis
(L+) then the equilibrium point is switched from 0 to 1.

Figure 1: Trajectory of MPL for Th = 0.5
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Note that the switching occurs only on x-axis (L). Repeat-
ing the rotation and switching, the MPL can exhibit chaotic
trajectories as shown in Fig. 2 (a).

The trajectories can be calculated by the piecewise exact
solution

x = p+ (x(0)− p)eδτcosωτ+
1
ω

(ẋ(0)−δ(x(0)− p))eδτsinωτ,

(3)
where (x(0), ẋ(0)) is an initial condition at τ = 0.

In order to define the 1D return map, we consider a tra-
jectory started from a point x0 ∈ L at τ = 0 where a point
on L is represented by its x coordinate. The trajectory in-
tersects L at τ = π/ω and let x1 be the intersection. Since
x0 determines x1, we can define the 1D return map F from
L to itself. The map is piecewise linear and is described
exactly [1]-[3]:

xn+1 = F(xn) ≡
{ −β(xn − 1) + 1 for xn ≥ Th
−βxn for xn < Th,

(4)

where β ≡ e
δπ
ω ( we will use either β or δ for convenience

of explanation). Now the dynamics is integrated into the
iteration xn+1 = F(xn). The chaos generation is guaranteed
if 1 < β < 2. In this case, there exists an invariant interval
I1 on which the map is expanding:

F(I1) ⊆ I1, |DF(x)| > 1, for x ∈ I1 ≡ (−F(0), F(0)], (5)

where DF(x) is the slope of F at x. The map has a pos-
itive Lyapunov exponent ln β [3] [4]. Figure 2(b) and (d)
show 1D return maps corresponding to Fig. 2(a) and (c),
respectively. Note that trajectories diverge for β > 2.

3. Cylinder Manifold Piecewise Linear System

First, we define an MPL with the infinite number of equi-
libria (MPL∞). Introducing the cylinder-type phase space,

Figure 2: Trajectory and 1D return map of MPL. (a)(b)
chaos for β = 1.7, (c)(d) divergence for β = 2.3.

the MPL∞ is transformed into the CMPL. The MPL∞ is
defined by

ẍ − 2δẋ + x = pn. (6)

This system is characterized by three parameters δ, pn, and
T . For simplicity, we assume

0 < δ < 1, pn = 2nT, T = 0.5 (7)

For convenience β ≡ e
δπ
ω (1 < β).

Switching rule of the MPL∞: Let the right hand side of
Eq. (6) be pn at τ = 0 and (x, ẋ) ∈ L0 where

Ln ≡ {x|(2n − 1)T ≤ x < (2n + 1)T, ẋ = 0}

L =
∞⋃

n=−∞
Ln, n = 0,±1,±2, · · · ,

The right hand side is switched to pn if the trajectory hits
Ln, The trajectory rotates around either of the equilibrium
points pn as shown in Fig. 3. If the trajectory hits Ln, the
equilibrium point is switched to pn.

Identifying Ln with L0 for all n, the CMPL is defined.
The identification is represented by

L0 = G(Ln),G(X) = ((X + T )mod2T ) − T. (8)

The mapping G constructs the cylinder-type phase space.
The CMPL is defined by the following.

ẍ − 2δẋ + x = p (9)

Switching rule of the CMPL: Let (x, ẋ) ∈ L0 at τ = 0.
If the trajectory hits Ln then the trajectory is switched into
the L0 as the following:

(x(τ+), ẋ(τ+)) = (G(x(τ+)), ẋ(τ+))

where τ+ denote the time just after τ, The switching is illus-
trated in Fig. 4. The CMPL generates chaotic trajectories
as shown in Fig. 5(a), (c), and (e).

Let us derive the 1D return map of the CMPL. Since a
trajectory started from L0 must return to L0, the dynamics
of the CMPL can be integrated into the 1D return map from
L0 to itself. The map is exactly piecewise linear and is
described by

xn+1 = f (xn) ≡ G(F(xn)), F(x) ≡ −β(x) (10)

Note that the domain of the map L0 is an invariant inter-
val: f (L0) ⊆ L0. Hence the trajectory dose not diverge
as far as β is finite. This is the major difference from the
MPL domain of whose return map is x-axis. Figure 5(b),
(d), and (f) show examples of the return map corresponding
to Fig. 5(a), (c), and (e), respectively. Since the slope of
map is constant (β), the Lyapunov exponent λ of the map is
ln β > 0 [4]. Hence the CMPL generates chaos as far as β is
finite. We can see that the CMPL can generate chaos with
a large Lyapunov exponent λ > ln 2. We refer to the chaos
with λ > ln 2 as the super-expanding chaos. Note that the
MPL cannot generate the super-expanding chaos because
the trajectories diverge for 2 ≤ β,
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Figure 3: Switching of the MPL∞.

Figure 4: Switching of the CMPL

4. Laboratory Experiments

Figure. 6(a) shows a test circuit of the CMPL. The sec-
ond order circuit is fabricated by an op amps (TL072) and
analog switches (TC4066). The supply voltages of the dis-
crete elements are ±8[V]. The dynamics is described by

RC
dv1

dt
= −v2, RC

dv2

dt
=

R0

R2
v2 +

R0

R1
v1 (11)

Using the following dimensionless variables and parame-
ters

τ =

√
R0

R1

t
RC
, x =

v1

E
, ẋ ≡ dx

dτ
,

y =

√
R1

R0

v2

E
, 2δ =

√
R1R0

R2
.

Equation (11) is transformed into the following equation
that is equivalent to Equation (9).

ẋ = −y, ẏ − 2δy − x = 0 (12)

The second-order circuit is controlled by three kinds of
switches S 1, S 2, and S 3. For simplicity, we have fabri-
cated this circuit for the case where the switching occur in
the range −3VB < v1 < 3VB. It corresponds to the case
1 < β < 3.

Figure 6(b) shows the control circuits of switches. Here,
v1 and v2 are capacitor voltages. If v1 > VB and v2 = 0,
the capacitor voltage v1 jumps to v1 − 2VB.If v1 < −VB and
v2 = 0, the capacitor voltage v1 jumps to v1 + 2VB.

Figure 5: Trajectory and 1D return maps of the CMPL. (a)
and (b) chaos for β = 1.6, (c) and (d) chaos for β = 2.0, (e)
and (f) super-expanding chaos for β = 2.6.

Figure 7 shows the laboratory measurements of chaotic
attractors that correspond to numerical chaotic attractors in
Fig. 5 (a), (c) and (e).

5. Conclusions

CMPL is presented and is analyzed in this paper. The
CMPL is defined on the cylinder-type phase space and can
generate the super-expanding chaos. Using the return map,
the chaotic dynamics has been analyzed theoretically. Fu-
ture problems include classification of chaotic attractors,
laboratory measurements of various phenomena, and engi-
neering applications.

References

[1] T. Saito and H. Fujita, Chaos in a manifold piecewise linear system,
Trans. IECE, J64-A, 10, pp. 827-834, 1981 (in Japanese).

[2] T. Saito, A chaos generator based on a quasi-harmonic oscillator,
IEEE Trans. Circuits Syst., 32, 4, pp. 320-331, 1985.

[3] T. Tsubone and T. Saito, Stabilizing and Destabilizing Control for a
Piecewise Linear Circuit, IEEE Trans., CAS-I, 45, 2, pp. 172-177,
1998.

- 175 -



Figure 6: Test circuit of the CMPL. (a)Test circuit
(b)Switching circuit
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Figure 7: Laboratory measurements of the CMPL for R 
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