
Reinforcement Learning using Improved Kohonen Feature Map
Probabilistic Associative Memory based on Weights Distribution

Shingo NOGUCHI† and Yuko OSANA†

†School of Computer Science, Tokyo University of Technology
1404-1 Katakura, Hachioji, Tokyo, 192-0982, Japan Email: osana@cs.teu.ac.jp

Abstract—In this paper, we propose a reinforcement
learning method using Improved Kohonen Feature Map
Probabilistic Associative Memory based on Weights Dis-
tribution (IKFMPAM-WD). The proposed method is based
on the actor-critic method, and the actor is realized by the
IKFMPAM-WD. The IKFMPAM-WD is based on the self-
organizing feature map, and it can realize successive learn-
ing and one-to-many associations. The proposed method
makes use of this property in order to realize the learning
during the practice of task. We carried out a series of com-
puter experiments, and confirmed the effectiveness of the
proposed method in the path-finding problem.

1. Introduction

The reinforcement learning is a sub-area of machine
learning concerned with how an agent ought to take ac-
tions in an environment so as to maximize some notion of
long-term reward[1]. Reinforcement learning algorithms
attempt to find a policy that maps states of the world to the
actions the agent ought to take in those states.

The Temporal Difference (TD) learning is one of the re-
inforcement learning algorithm. The TD learning is a com-
bination of Monte Carlo ideas and dynamic programming
(DP) ideas. TD resembles a Monte Carlo method because
it learns by sampling the environment according to some
policy. TD is related to dynamic programming techniques
because it approximates its current estimate based on pre-
viously learned estimates. The actor-critic method[2] is the
method based on the TD learning, and consists of two parts;
(1) actor which selects the action and (2) critic which eval-
uate the action and the state.

On the other hand, neural networks are drawing much
attention as a method to realize flexible information pro-
cessing. Neural networks consider neuron groups of the
brain in the creature, and imitate these neurons technologi-
cally. Neural networks have some features, especially one
of the important features is that the networks can learn to
acquire the ability of information processing. The flexible
information processing ability of the neural network and
the adaptive learning ability of the reinforcement learning
are combined, some reinforcement learning method using
neural networks are proposed[3]-[5].

In this paper, we propose the reinforcement learning
method using Improved Kohonen Feature Map Proba-

bilistic Associative Memory based on Weights Distribu-
tion (IKFMPAM-WD)[6]. The proposed method is based
on the actor-critic method, and the actor is realized by
the IKFMPAM-WD. The IKFMPAM-WD is based on the
self-organizing feature map[7], and it can realize succes-
sive learning and one-to-many associations. The proposed
method makes use of this property in order to realize the
learning during the practice of task.

2. Reinforcement Learning using IKFMPAM-WD

Here, we explain the proposed reinforcement learning
method using IKFMPAM-WD[6].

2.1. Outline

In the proposed method, the actor in the actor-critic[2]
is realized by the IKFMPAM-WD. In this research, the In-
put/Output Layer in the IKFMPAM-WD is divided into two
parts corresponding to the state s and the action a, and the
actions for the states are memorized.

In this method, the critic receives the states which are
obtained from the environment, the state is estimated and
the value function is updated. Moreover, the critic out-
puts the Temporal Difference (TD) error to the actor. The
IKFMPAM-WD which behaves as the actor (we call this
“actor network”) is trained based on the TD error, and se-
lects the action from the state of environment. Figure 1
shows the flow of the proposed method.

2.2. Actor Network

In the proposed method, the actor in the Actor-Critic[2]
is realized by the IKFMPAM-WD.

2.2.1. Dynamics

In the actor network, when the state s is given to the In-
put/Output Layer, the corresponding action a is recalled.
In the proposed method, as the state, (1) current and pre-
vious states (observations) and previous action and (2) cur-
rent state (observation) are used. Moreover, the other ac-
tion is also selected randomly (random selection), and the
most desirable action from the recalled actions and the ac-
tion selected in the random selection is chosen as the action
finally.

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 185 -

actor

environment

agent

(TD error)
�

critic ��� � �

���	
��

� �state action ���

reward � �

Figure 1: Flow of Proposed Method.

When the actor network uses the current state s1(t) and
the previous state and action s2(t), the state s(t) is given by

s(t) = (s1(t) s2(t))T . (1)

When the actor network uses the current state s1(t), the
state s(t) is given by

s(t) = (s1(t) − 1 · · · − 1)T . (2)

When the pattern X(t) is given to the network, the output
of the neuron i in the Map Layer at the time t xmap

i (t) is
given by

xmap
i =

{ 1, (i = r)
0, (otherwise) .

(3)

In the recall process, the input which does not receive
the pattern is set to −1, and the winner neuron r is selected
randomly from the neurons which satisfy

1
N in

∑
k∈C

k : Xk (t),−1

g(Xk(t) −Wik) ≥ θmap (4)

g(b) =

{
1, (|b| < θd)
0, (otherwise).

(5)

where N in is the number of neurons which receive the input
that not equal −1, C is the set of neurons in the Input/Output
Layer which receive the input that not equal −1, and θmap

is the threshold of the neuron in the Map Layer. And the
input vector is given by

X(t) = (s(t) − 1 · · · − 1)T
. (6)

The output of the neuron k in the Input/Output Layer at
the time t, xio

k (t) is given by

xio
k (t) =


1, 0.5 ≤ Wrk

0, 0 ≤ Wrk < 0.5
−1, Wrk < 0.

(7)

2.2.2. Learning

The actor network is trained based on the TD error from
the critic and the eligibility.

(1) Learning based on Reward

In the learning based on the reward, the pair of the
state s(t) and the selected action a(t) is memorized.
The learning vector Xtr(t) is given by

Xtr(t) = (s(t) a(t))T
. (8)

If the action which is recalled in the actor network
only from the current state (observation) is selected,
s(t) in Eq.(2) is used. In the other cases, s(t) in Eq.(1)
is used.

(a) When State and Action are not Stored

If the pair of the state and the action are not stored
and the positive reward is given, that pattern is trained
as a new pattern. If the input vector is generated by
Eqs.(2) and (8), the learning vector Xtr(t) is generated
again by Eqs.(1) and (8).

(b) When State and Action are Stored

If the pair of the state and the action are stored and
the positive reward is given, the area corresponding to
the pattern is expanded. If the pair of the state and the
action are stored and the negative reward is given, the
area corresponding to the pattern is reduced. Here, the
area corresponding to the pattern is the area composed
of the neurons which satisfy d(Xtr(t),Wi)>θt. When
the learning vector Xtr(t) is generated by Eqs.(2) and
(8), all corresponding areas are updated or reduced.

(b-1) When Positive Reward is Given

If the positive reward is given, the area correspond-
ing to the learning vector Xtr(t) is expanded. When
the learning vector is generated by Eqs.(1) and (8), the
size of the area whose center is the neuron z is updated
as follows:

a(new)
z =

{
a(old)

z + ∆a+
1 , a(old)

z + ∆a+
1 ≤ amax

a(old)
z , otherwise

(9)

b(new)
z =

{
b(old)

z + ∆b+
1 , b(old)

z + ∆b+
1 ≤ bmax

b(old)
z , otherwise

(10)

where ∆a+
1 is the increment of az, ∆b+

1 is the incre-
ment of bz, amax is the maximum of az, and bmax is the
maximum of bz.

When the learning vector is generated by Eqs.(2)
and (8), the size of the area whose center is the neuron
z is updated as follows:

a(new)
z =

{
a(old)

z + ∆a+
2 , a(old)

z + ∆a+
2 ≤ amax

a(old)
z , otherwise

(11)

b(new)
z =

{
b(old)

z + ∆b+
2 , b(old)

z + ∆b+
2 ≤ bmax

b(old)
z , otherwise

(12)

where ∆a+
2 (∆a+

2 ≤ ∆a+
1) is the increment of az, and

∆b+
2 (∆b+

2 ≤ ∆b+
1) is the increment of bz.

- 186 -

When the area size is updated, the connection
weights are updated as follows:

Wi(t + 1) =

{Wz(t), dzi ≤ Dzi

Wi(t), otherwise (13)

where dzi is the distance between the neuron i and the
neuron z.

(b-2) When Negative Reward is Given

If the negative reward is given, the area correspond-
ing to the learning vector Xtr(t) is expanded. When
the learning vector is generated by Eqs.(1) and (8), the
size of the area whose center is the neuron z is updated
as follows:

a(new)
z =

{
0, a(old)

z − ∆a−1 < 0
a(old)

z − ∆a−1 , otherwise
(14)

b(new)
z =

{
0, b(old)

z − ∆b−1 < 0
b(old)

z − ∆b−1 , otherwise
(15)

where ∆a−1 is the decrement of az, and ∆b−1 is the
decrement of bz.

When the learning vector is generated by Eqs.(2)
and (8), the size of the area whose center is the neuron
z is updated as follows:

a(new)
z =

{
0, a(old)

z − ∆a−2 < 0
a(old)

z − ∆a−2 , otherwise
(16)

b(new)
z =

{
0, b(old)

z − ∆b−2 < 0
b(old)

z − ∆b−2 , otherwise
(17)

where ∆a−2 is the decrement of az, and ∆b−2 is the
decrement of bz.

If az and bz become to 0, the area whose center is z
disappears and the neuron z is unlocked.

When the area size is updated, the connection
weights are updated as follows:

Wi(t + 1) =

{
R, D(a f ter)

zi < dzi ≤ D(be f ore)
zi

Wi(t), otherwise
(18)

where R is small random value.

(2) Learning based on Eligibility

In the learning based on the eligibility, the areas cor-
responding to the state s1 which satisfy

e(s1) < θe (19)

are reduced. Here, e(s1) is the eligibility for the state
s1 and θe is the threshold for the eligibility.

The area size is updated as follows:

a(new)
z =

{
0, a(old)

z − ∆a−3 < 0
a(old)

z − ∆a−3 , otherwise
(20)

b(new)
z =

{
0, b(old)

z − ∆b−3 < 0
b(old)

z − ∆b−3 , otherwise
(21)

where ∆a−3 is the decrement of az, and ∆b−3 is the
decrement of bz.

When the area size is updated, the connection
weights are updated by Eq.(18).

2.3. Reinforcement Learning using IKFMPAM-WD

The flow of the proposed reinforcement learning method
using IKFMPAM-WD is as follows:

(1) The initial values of weights in the actor network are
chosen randomly.

(2) The agent observes the environment s(t), and the actor
a(t) is selected by the actor network or the random
selection.

(3) The state s(t) transits to the s(t + 1) by action a(t).

(4) The critic receives the reward r(s(t + 1)) from the en-
vironment s(t + 1), and outputs the TD error δ to the
actor.

δ = r(s(t + 1)) + γV(s(t + 1)) − V(s(t)) (22)

where γ (0 <γ< 1) is the decay parameter, and V(s(t))
is the value function for the state s(t).

(5) The eligibility e(s) is updated.

e(s)←
{
γλe(s) (if s , s(t + 1))
γλe(s) + 1 (if s = s(t + 1)) (23)

where γ (0 <γ< 1) is the decay parameter, and λ is the
trace decay parameter.

(6) All values for states V(s) are updated based on the
eligibility et(s) (s ∈ S).

V(s)← V(s) + ξδe(s) (24)

where ξ (0 < ξ ≤ 1) is the learning rate.

(7) The connection weights in the actor network are up-
dated based on the TD error and the eligibility.

(8) Back to (2).

3. Computer Experiment Results

Here, we show the computer experiment results to
demonstrate the effectiveness of the proposed method.

- 187 -

3.1. Path-Finding Problem

We applied the proposed method to the path-finding
problem. In this experiment, a agent moves from the start
point (S) to the goal point (G). The agent can observe
the states of three cells in the lattice, and can move for-
ward/left/right. As the positive reward, we gave 3 when
the agent arrives at the goal and 2 when the agent moves.
And as the negative reward, we gave −1 when the agent
hits against the wall.

Figure 2 shows the transition of number of steps from
the start to the goal. In Fig.2, the trained routes (arrows)
are also shown. Figure 3 shows an example of the trained
relation between the state and the action. And Fig.4 shows
the area size transition in the same trail. As shown in this
figure, some areas are expanded and the other areas are re-
duced or disappeared.

3.2. Learning in Other Environment

Here, the network which was learned in the Map 1 or
2 was used in the Map 3. Figure 5 shows the transition
of number of steps from the start to the goal in the Map
3 using the network trained in the Map 1 or 2. As shown
in this figure, the proposed method can use the knowledge
which was trained in the similar environment.

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 500

T
he

 N
um

be
r

of
 S

te
ps

Trial No.

S

The Number of Steps : 9

G

(a) Map 1

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 500

T
he

 N
um

be
r

of
 S

te
ps

Trial No.

S

The Number of Steps : 12

G

(b) Map 2

Figure 2: Trained Route and Transition of Steps.

forward

right

� � � ����� � 	 �
 ��� � � 	 �

right

forward
left

�
� � � �
��� � � �
��� � � �

� ���� !
� "

����$!
� "

%
& ' ()
*�+ , - .
/�0 1 2

forward

3 4 5
6�7 3 8 9 :; 6�7�< 8 9 :

=
> ? @ A
B�C D E F
G�H I J

right forward

right forward

forward right

left left

forward

rightleft forward

K L M
N�O K P Q LR N�O�S P Q L

T�U
V�W�X Y Z [\ V�W�] Y Z [

^�_
`�a�b c d ef `�a�g c d e

h i j
k�l h m n op k�l�q m n o

r s t
u�v r w x yz u�v�{ w x y

| } ~
����� � � �� ��� | � � �

(a) Map 1

right

� � � ����� � 	
� ��� � � 	

forward

��
 � � �
��� � � �
��� � �

��� � !
"�# $ % &
'�() *

+�, - . /
0�1 2 3 4
5�6 7 8

forward

forward

forwardright
right leftforward

9 9 :
;�<�= > ? @A ;�< 9 > ? @

B C D
E�F B G H IJ E�F�K G H I

L M N
O�PRQ S T TU O�P L S T T

forwardforward right
right forward left right

left
forwardleft

left

V W X
Y�Z V [\]^ Y�Z�_ [\]

` ` a
b�c�d e f gh b�c ` e f g

i i j
k�l�m n o pq k�l i n o p

r s t
u�v r w x xy u�v r w z z

{ { |
}�~�� � � �� }�~ { � � �

� � �
��� � � � �� ��� � � � �

(b) Map 2

Figure 3: An example of Trained Relation between State
and Action.

0

5

10

15

20

25

30

35

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Area 1
Area 3
Area 5

Area 4
Area 6

Area 2

T
he

 N
um

be
r

of
 N

eu
ro

ns
 in

 E
ac

h
A

re
a

Step No.

(a) Map 1

0

5

10

15

20

25

30

35

0 1000 2000 3000 4000 5000 6000

Area 1
Area 3
Area 5

Area 4
Area 6

Area 2

T
he

 N
um

be
r

of
 N

eu
ro

ns
 in

 E
ac

h
A

re
a

Step No.

(b) Map 2

Figure 4: Transition of Area Size.

0

10

20

30

40

50

60

70

0 10 20 30 40 500

T
he

 N
um

be
r

of
 S

te
ps

Trial No.

S

The Number of Steps : 10

G

(a) Map 3

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 500

T
he

 N
um

be
r

of
 S

te
ps

Trial No.

(b) Map 1→Map 3

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 500

T
he

 N
um

be
r

of
 S

te
ps

Trial No.

(c) Map 2→Map 3

Figure 5: Transition of Steps (Map 3).

4. Conclusions
In this paper, we have proposed the reinforcement learn-

ing method using IKFMPAM-WD. The proposed method
is based on the actor-critic method, and the actor is re-
alized by the IKFMPAM-WD. We carried out a series of
computer experiments, and confirmed the effectiveness of
the proposed method in path-finding problem.

References
[1] R. S. Sutton and A. G. Barto : Reinforcement Learning, An Intro-

duction, The MIT Press, 1998.

[2] I. H. Witten : “An adaptive optimal controller for discrete-time
Markov environments,” Information and Control, Vol.34, pp. 286–
295, 1977.

[3] S. Ishii, M. Shidara and K. Shibata: “A model of emergence of re-
ward expectancy neurons by reinforcement learning,” Proceedings
of the 10th International Symposium on Artificial Life and Robotics,
GS21–5, 2005.

[4] A. Shimizu and Y. Osana : “Reinforcement learning using Kohonen
feature map associative memory with refractoriness based on area
representation,” Proceedings of International Conference on Neural
Information Processing, Auckland, 2008.

[5] Y. Osana : “Reinforcement learning using Kohonen feature map
probabilistic associative Memory based on weights distribution,”
Proceedings of International Symposium on Nonlinear Theory and
its Applications, Sapporo, 2009.

[6] S. Noguchi and Y. Osana : “Improved Kohonen feature map proba-
bilistic associative memory based on weights distribution,” Proceed-
ings of IEEE and INNS International Joint Conference on Neural
Networks, Barcelona, 2010.

[7] T. Kohonen : Self-Organizing Maps, Springer, 1994.

- 188 -

	Navigation page
	Session at a glance
	Technical program

