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Abstract—The phase reduction method is a strong
tool to analyze collective behaviors of various biolog-
ical, physical or chemical oscillatory components. In
this method, the response of a reduced system to ex-
ternal forces is described by the phase response func-
tion (PRF). In this paper, we propose a method for
estimating the PRF only from noisy multivariate time
series. To confirm the validity of our method, we es-
timate the PRFs of the Stuart-Landau and FitzHugh-
Nagumo oscillators. As a result, estimated PRFs from
multivariate time series show good agreement with the
theoretical ones. We also show that the estimation
method is robust against noisy environment.

1. Introduction

Rhythmic phenomena are ubiquitous in the real
world, for example, the synchronization of frog calls
[1], the Belousov-Zhabotinsky reaction [2] and the
Josephson junction [3]. These collective orders are or-
ganized through interactions between oscillatory com-
ponents, whose behaviors are described by ordinary
differential equations. When we analytically investi-
gate the collective behavior of interacting components,
the phase reduction method becomes a strong tool
[4], because a model of the components is too com-
plex to investigate analytically. However, if we use the
phase reduction method, we can reduce these models
to a simple model with one degree of freedom. In this
method, the response of a reduced system to external
forces is described by a phase response function (PRF).
If the PRF of a nonlinear dynamical system such as
a neuron is obtained, we can understand its behavior.
Thus, it is important to estimate the PRF in various
fields including the computational neuroscience. The
methods for estimating the PRF have been studied in
many previous works [5].

In this paper, we propose a method for estimating
the PRF only from noisy multivariate time series. In
conventional methods, it is necessary to perturb a dy-
namical system repeatedly and observe its responses.
For example, in case of a neuron, we have to inject im-

pulsive or fluctuating drive currents to the neuron re-
peatedly and record its spike times. However, we can-
not apply the same strategy to many other dynamical
systems. This is the reason why most of the conven-
tional methods, which are developed to estimate the
PRF of neurons, do not work well for the other dy-
namical systems. Our method only needs multivariate
time series and can be applied to a general class of
dynamical systems. Namely, we can omit complicated
experimental procedures in the conventional methods
and estimate the PRF of various dynamical systems.

Several methods [6], which are based on the embed-
ding theory [7], have been proposed to estimate the
PRF only from a time series. However, their methods
are valid only for the type I oscillator, whose PRF is es-
timated only from the vector field on the unperturbed
limit-cycle attractor, because the vector field around
the attractor is neglected in their methods. Thus, their
methods are not valid for the type II oscillator. On the
other hand, in our method, we estimate the Jacobian
matrix on the limit-cycle attractor, which is a linear
approximation of the vector field around the attrac-
tor, by utilizing fluctuations of the orbit. Therefore,
we can estimate the PRF considering the vector field
around the attractor, which makes our method valid
for a general class of limit-cycle oscillators.

2. Theoretical aspects

The phase reduction method was established by Ku-
ramoto [4]. Let us define x ∈ Rn as an n-dimensional
state variable and consider the following system:

ẋ = F (x) + p(t), (1)

where F (x) ∈ Rn is an unperturbed vector field, which
has a T -periodic limit-cycle solution x0(t), and p(t)
is an external force. Here, we call p(t) the dynami-
cal noise. The phase coordinate θ(x) is defined in a
neighborhood of x0(t) so that the phase θ may al-
ways increase at the constant speed ω (= 1/T =
gradxθ(x) · F (x)), where gradx represents the gra-
dient operator. The constant ω is called the phase
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speed or angular velocity. Kuramoto defined the PRF
Z(θ) ∈ Rn:

Z(θ) = gradxθ(x0(θ)). (2)

According to the Malkin theorem, the PRF Z(θ) sat-
isfies the adjoint equation [8]:

Ż = DF (x0(θ))>Z, (3)

and the normalization condition:

Z(θ) · F (x0(θ)) = ω, (4)

where DF (x) ∈ Rn×n is the Jacobian matrix on the
point x. If the Jacobian matrix is estimated, integrat-
ing the adjoint equation (3), we can obtain the PRF.
In our method, instead of estimating the Jacobian ma-
trix itself, we estimate the tangent map as in Ref. [9].
Let us define ∆x(t) ∈ Rn as a very small displacement
vector from a point x(t). The evolution of ∆x(t) can
be approximated with

∆ẋ(t) = DF (x(t))∆x(t). (5)

We define the tangent map G ∈ Rn×n:

∆x(t + ∆t) = ∆x(t) +
∫ t+∆t

t

DF (x(s))∆x(s)ds

≡ G∆x(t), (6)

which can be used to integrate the adjoint equation
(3) as follows

Z(t + ∆t) = G>Z(t). (7)

3. Proposed method

In our method, we estimate the tangent maps de-
fined in Eq. (6) and integrate the adjoint equation (3)
by using Eq. (7). The solution of the adjoint equation
is the estimated PRF.

(i) Estimation of the tangent maps: Let xt ∈
Rn (t = 1, 2, . . . , N) be a noisy n-dimensional multi-
variate time series observed from a dynamical system
that has a stable limit-cycle solution. We first assume
that we can observe only a noisy time series xt. We
do not need any additional information or restrictive
assumptions. We define yt ∈ Rn (t = 1, 2, . . . ,M)
as the unperturbed limit-cycle orbit of one oscillatory
period and Ft ∈ Rn (i = 1, 2, . . . , M) as the vector
field on the point yt, which are estimated by averag-
ing xt. For simplicity of notation, yt ∈ Rn is defined
so that the periodic boundary condition yM+1 = y1

may hold. We set the initial point y1 on the limit-cycle
orbit, estimate yt and Ft by the following equations:

Ft =
1

L∆t

L∑
j=1

[
xk(j)+1 − xk(j)

]
, (8)

yt+1 = yt + Ft∆t, (9)

where ∆t is the time step of xt and yt, and xk(j)

(j = 1, 2, . . . , L) is one of the L neighbor points of the
point yt satisfying ||xk(j)−yt|| < ε, where ||·|| denotes
the Euclidean norm, and ε is the threshold. In Eq.
(8), we simply average the noisy one-step evolutions
of data points xk(j)+1 − xk(j) (j = 1, . . . , L), which
yields the averaged vector field Ft. In Eq. (9), we use
a simple linear time series prediction by using Ft and
estimate yt+1. If the unperturbed limit cycle attractor
is sufficiently stable, the original orbit is well fitted by
the estimated orbit yt (t = 1, 2, 3, . . .).

Since the neighbor points yt and xk(j) evolve into
yt+1 and xk(j)+1, respectively, we define the displace-
ment vectors ∆xj , ∆x′

j ∈ Rn:

∆xj ≡ xk(j) − yt, ∆x′
j ≡ xk(j)+1 − yt+1. (10)

From Eq. (6), we can estimate the tangent map Gt ∈
Rn×n (i = 1, 2, . . . ,M) minimizing the square error S:

S ≡
L∑

j=1

∣∣∆x′
j − Gt∆xj

∣∣2 (11)

by the least-squares optimization. In other words, the
tangent map Gt can be obtained as

Gt = CtW
−1
t , (12)

where Ct ∈ Rn×n (≡ L−1
∑L

j=1 ∆x′
j∆x>

j ) is the co-
variance matrix between ∆xj and ∆x′

j , and Wt ∈
Rn×n (≡ L−1

∑L
j=1 ∆xj∆x>

j ) is the variance matrix
of ∆xj .

(ii) Integration of the adjoint equation: We
define Z̃t ∈ Rn (i = 1, 2, . . . , M) as the estimated PRF
before the normalization so that the periodic boundary
condition Z̃M+1 = Z̃1 may hold. Instead of directly
integrating the adjoint equation, we use Eq. (7) and
iteratively calculate the following equation:

Z̃t−1 = G>
t Z̃t, (13)

for t = M, M − 1,M − 2, . . . for several periods. The
initial value Z̃M is arbitrary. To achieve numerical
stability, the adjoint equation must be integrated back-
ward as mentioned in Ref. [8]. Finally, we normalize
the PRF by

Zt =
ω

Z0
Z̃t, (14)

where Z0 ≡ M−1
∑M

i=1 Ft · Z̃t. The estimate Zt ∈ Rn

of the PRF is obtained.

4. Simulation settings

To confirm the validity of our method, we ap-
plied our method to the Stuart-Landau [4] and the
FitzHugh-Nagumo [10] oscillators.
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The Stuart-Landau oscillator [4] has a normal form
of the Hopf bifurcation and is described by

ẋ = x − ηy − (x2 + y2)(x − αy) + σdynξ1(t), (15)
ẏ = y + ηx − (x2 + y2)(y + αx) + σdynξ2(t), (16)

where x and y are state variables, σdyn is the strength
of the dynamical noise, and ξi(t) (i = 1, 2) is the
Gaussian white noise satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξj(s)〉 = δijδ(t−s), where 〈·〉 represents the tem-
poral average, and δ(t) is Dirac’s delta function. We
set the parameters η = 2 and α = −1. For these
parameters, we analytically obtain the PRF Z(θ) =
(
√

2π)−1[sin(θ + 3π/4), sin(θ + π/4)]> (Fig. 1 (a)).
The FitzHugh-Nagumo oscillator [10] is described

by

v̇ = v − v3

3
− u + I0 + σdynξ1(t), (17)

u̇ = ε(u + a − bu) + σdynξ2(t), (18)

where v and u are state variables, and we set the pa-
rameters I0 = 0.8, ε = 0.08, a = 0.7 and b = 0.8.
We numerically calculate the theoretical PRF of this
model by using the method proposed in Ref. [8] (Fig.
1 (b)).

In numerical simulations, we assumed that all vari-
ables of the dynamical systems are observed, and that
the observed multivariate time series is subject to the
observational noise, which is the Gaussian white noise
with the mean 0 and the variance σ2

obs. We estimated
the PRFs only from the multivariate time series.

5. Results

Theoretical PRF and estimated PRF are compared
in Fig. 1. They show good agreements with each
other. From Fig. 1, we can effectively estimate
the PRFs of both the Stuart-Landau and FitzHugh-
Nagumo oscillators.

To confirm the robustness of our method, we in-
vestigated the estimation accuracy for various param-
eters. In Fig. 2, we show the mean square errors
(MSEs) between the theoretically calculated and esti-
mated PRFs. As shown in Fig. 2 (a) and (b), when
the strength of the observational noise σobs is large,
the MSEs tend to be large. It is natural to consider
that the observational noise is an obstacle for the ac-
curate estimation. As shown in Fig. 2 (c) and (d),
when the time step ∆t is large, the MSEs also tend to
be large. This result indicates that ∆t must be suffi-
ciently smaller than the decay time of the orbit into
the limit-cycle attractor for the accurate estimation.

Figure 2 shows that the dynamical noise improves
estimation accuracy. When the strength of the dynam-
ical noise σdyn is sufficiently large, even if σobs or ∆t
is large to a certain extent, the PRFs can be precisely
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Figure 1: Theoretically calculated (lines) and esti-
mated (circles) PRFs. We set the parameters σdyn =
10−2, σobs = 0, N = 106, ∆t = 10−3 and ε = 0.1
for (a) the Stuart-Landau oscillator, and σdyn = 10−2,
σobs = 0, N = 105, ∆t = 10−2 and ε = 0.1 for (b) the
FitzHugh-Nagumo oscillator.

estimated as demonstrated in Fig. 2. When σdyn is
small, we cannot estimate the PRF even if σobs and
∆t are sufficiently small. These results indicate that
the dynamical noise plays a key role in estimating the
PRF. The strong dynamical noise lengthens the decay
time of the orbit, which ebables us to estimate the evo-
lution of displacement vectors in the estimation of the
tangent maps.

6. Summary

In this paper, we proposed an approach to estimate
the PRF only from noisy multivariate time series. Al-
though several methods [6] have already been proposed
to estimate the PRF only from a time series, their
methods are valid only for the limited systems. On
the other hand, in our method, we estimate the Jaco-
bian matrix utilizing fluctuations of the orbit induced
by the dynamical noise. Thus, our method is valid for
the general class of limit-cycle oscillators. We demon-
strated the numerical results for the Stuart-Landau
and FitzHugh-Nagumo oscillators.

When we observe the response of real systems such
as a neuron, the dynamical noise is inevitable and in-
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herent in the system. It has been considered that the
noise in real systems is an obstacle for estimating the
PRF. On the other hand, we utilize the dynamical
noise rather than reduce it. We demonstrated that the
robust estimation is realized by the dynamical noise.
One of the important works is to estimate PRFs only
from a single variable time series.

The authors would like to thank Mr. S. Ogawa and
AGS Corp. for their encouragement on this research
project.
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(a) MSE of Zx(θ) (σdyn vs. σobs)
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(b) MSE of Zy(θ) (σdyn vs. σobs)
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(c) MSE of Zx(θ) (σdyn vs. ∆t)
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(d) MSE of Zy(θ) (σdyn vs. ∆t)

Figure 2: The MSEs between the theoretical and es-
timated PRFs Z(θ) = [Zx(θ), Zy(θ)]> of the Stuart-
Landau oscillator for various parameters. We use the
heat maps on the (σdyn,σobs) and (σdyn,∆t) planes,
and the color represents the MSE. We set the parame-
ters N = 105, ∆t = 10−3, ε = 0.1 for (a) and (b), and
N = 105, σobs = 10−5, ε = 0.1 for (c) and (d).
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