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Abstract—In this paper, we propose a Kohonen Feature
Map Probabilistic Associative Memory based on Weights
Distribution and Area Neuron Increase and Decrease. This
model is based on the conventional Kohonen Feature Map
Probabilistic Associative Memory based on Weights Dis-
tribution. In the proposed model, the winner neuron is se-
lected from the neurons in the Map Layer whose connec-
tion weights are similar to the input pattern, and the asso-
ciations based on weights distribution are realized. More-
over, the weight distribution in the Map Layer can be mod-
ified by the increase and decrease of neurons in each area.
This model has enough robustness for noisy input and dam-
aged neurons. We carried out a series of computer ex-
periments and confirmed the effectiveness of the proposed
model.

1. Introduction

Recently, neural networks are drawing much attention as
a method to realize flexible information processing. Neural
networks consider neuron groups of the brain in the crea-
ture, and imitate these neurons technologically. Neural net-
works have some features, especially one of the important
features is that the networks can learn to acquire the ability
of information processing.

In the field of neural network, many models have been
proposed. In these models, the learning process and the re-
call process are divided, and therefore they need all infor-
mation to learn in advance. However, in the real world, it is
very difficult to get all information to learn in advance, so
we need the model whose learning process and recall pro-
cess are not divided. As such model, Grossberg and Car-
penter proposed the ART (Adaptive Resonance Theory)[1].
However, the ART is based on the local representation, and
therefore it is not robust for damaged neurons. While in
the field of associative memories, some models have been
proposed[2]-[4]. Since these models are based on the dis-
tributed representation, they have the robustness for dam-
aged neurons. However, their storage capacities are small
because their learning algorithm is based on the Hebbian
learning.

On the other hand, the Kohonen Feature Map (KFM)
associative memory[5] has been proposed. Although the
KFM associative memory is based on the local represen-
tation as similar as the ART[1], it can learn new patterns

successively[6], and its storage capacity is larger than that
of models in refs.[2]-[4]. It can deal with auto and het-
ero associations and the associations for plural sequen-
tial patterns including common terms[7]. Moreover, the
KFM associative memory with area representation[8] has
been proposed. In the model, the area representation[9]
was introduced to the KFM associative memory, and it
has robustness for damaged neurons. However, it can
not deal with one-to-many associations, and associations
of analog patterns. As the model which can deal with
analog patterns, the Kohonen Feature Map Associative
Memory with Refractoriness based on Area Representation
(KFMAM-R-AR)[10] has been proposed. In the model,
one-to-many associations are realized by refractoriness of
neurons. Moreover, the Kohonen Feature Map Proba-
bilistic Associative Memory based on Weights Distribu-
tion (KFMPAM-WD)[11] has been proposed. It is based
on the conventional KFM associative memory with area
representation[8] and can realize probabilistic association
for the training set including one-to-many relations.

In this paper, we propose a Kohonen Feature Map Prob-
abilistic Associative Memory based on Weights Distri-
bution and Area Neuron Increase and Decrease. This
model is based on the conventional Kohonen Feature
Map Probabilistic Associative Memory based on Weights
Distribution[11]. In the proposed model, the winner neu-
ron is selected from the neurons in the Map Layer whose
connection weights are similar to the input pattern, and
the associations based on weights distribution are realized.
Moreover, the weights distribution in the Map Layer can be
modified by the increase and decrease of neurons in each
area. This model has enough robustness for noisy input and
damaged neurons.

2. KFM Probabilistic Associative Memory based on
Weights Distribution and Area Neuron Increase and
Decrease

Here, we explain the proposed Kohonen Feature Map
Probabilistic Associative Memory based on Weights Dis-
tribution and Area Neuron Increase and Decrease.

2.1. Structure

Figure 1 shows the structure of the proposed model. As
shown in Fig.1, the proposed model has two layers; (1)
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Input/Output Layer

Figure 1: Structure of Proposed Model.

Input/Output(l/O) Layer and (2) Map Layer, and the 1/O
Layer is divided into some parts.

2.2. Learning Process

In the learning algorithm of the proposed model, the pat-
terns are learned as follows:

(1) In the network with the Map Layer composed of
Xmax X Ymax Deurons, the connection weights are ini-
tialized randomly. Here, x,,,, is the initial number of
neurons of a horizontal direction, and y,,,, is the ini-
tial number of neurons of a vertical direction. In the
initial state, X,y X Ymqx Neurons are arranged at the
coordinates (0,0), (1,0), - --, (Xpax — 1,0), (1,0), ---,
(-xmax - 1symax - 1)

(2) The Euclidean distance between the learning vec-

tor X» and the connection weights vector W;,
d(X'?, W) is calculated.

d(XP,W;) = ey

where M is the number of neurons in the Input/Output
Layer. If d(X(”), W) > @' is satisfied for all neurons,
the input pattern X'” is regarded as an unknown pat-
tern. If the input pattern is regarded as a known pat-
tern, go to (6).

(3) The neuron which is the center of the learning area ¢
is determined as follows:

¢ = argmin d(X'", W). 2)
i: Di+D;<d;<d;+1
(for VzeF)

In this equation, the neuron whose Euclidean distance
between its connection weights and the learning vec-
tor is minimum in the neurons which can be take ar-
eas without overlaps to the areas corresponding to the
patterns which are already trained. In Eq.(2), F is the

set of the weight-fixed neurons, d;;, is the distance be-
tween the neuron i and the weight-fixed neuron z. And
D;; is the radius of the ellipse area whose center is the
neuron i for the direction to the neuron i for the direc-
tion to the neuron j, and is given by

27,2

a;i*b;
(i 4 1),
2 2,20 1
bi +ml~j a;

D;j = (d; # 0and d}; # 0)
ai, (d); = 0) (3)
bi, (d;; = 0)

where a; and b; are the long and short radius of the
ellipse, and m;; is the slope of the line through the
neurons i and j, and is given by
&,

ij
7 (d; #0). “4)

»
ij

m,'j:

4) Ifd(X'P,W,) > ¢ is satisfied, the connection weights
of the neurons in the ellipse whose center is the neuron
c are updated as follows:

X7, (0™ < H(d.))
Wi(t) + H(d)(XP = W),
(0[2earn < H(d_a) < Qlleam (5)
and H(d;;) < @)
(otherwise)

Wit+1)=

W@,

where 6/ and 65" are the thresholds, and i* is the
nearest weight-fixed neuron from the neuron i. H (d_a-)
and H(d;;) are the semi-fixed functions and are given
by

H(d,) = S S (6)

( . J
1 + exp
&

where ¢ is the steepness parameter of the function

H(d;), and D (1 < D) is the size of the neighborhood

area. d,; is the normalized distance between the center

neuron of the area ¢ and the neuron i, and is given by
-5 dci

dei = —. 7
D (7

If there is no weight-fixed neuron,

H(dy) = 0 ®)
is used.
(5) The connection weights of the neuron ¢ W, are fixed.

(6) (2)~(5) are iterated when a new pattern set is given.

2.3. Neuron Increase and Decrease

In the proposed model, the weights distribution in the
Map Layer can be modified by the increase and decrease of
neurons in each area.
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2.3.1. Neuron Increase

In the proposed model, the neuron is added at the po-
sition corresponding to the neurons that exist in the initial
Map Layer.

When the N, neurons whose connection weights are
same as that of the center neuron are in the area z, the neu-
ron is added as follows. Here, N is the number of the
neurons when the area z is generated, N"" is the minimum
number of the neurons in the area z, and N"** is the maxi-
mum number of the neurons in the area z.

(1) N" < N, < NI~

If N < N, < N> is satisfied, the new neuron is added
in the area z.

The reference neuron j* corresponding to the adding
neuron j is given by

J* = ((Nz = Ni"y mod (N = 1)) + 1 ()

where mod shows remainder operation, and j* shows the
sequential serial number for the neurons except for the cen-
ter neuron which exist when the area is generated (See
Fig.2). The coordinates of the new neuron is given by

§add

xj = xj*—sgn(xj*).é (10)
S‘f;d

Vi = v sy 5 (11)

where xj-, y;- are the coordinates of the reference neuron
J*, and sgn(-) is the sign function. C. is the coefficient for
the distance between neurons in the area z, and is given by

B N;nax_Néni
C.=|—=——— = |+1. (12)

Nim’ -1
Z

S?dd is

13)

where [-] is the ceiling function and | -] is the floor function.
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Figure 2: Sequential Serial
in Area.

umber for Original Neurons

(2) N;nin < NZ < Néni

If the number of the neurons in the area N, is smaller
than Né”i , the connection weights of the neuron in the area
(the neuron which satisfy d.; < D,; and whose connection
weights are same as that of the center neuron) are initial-
ized randomly. The connection weights are updated in the
neuron whose sequential serial number is N, — 1.

2.4. Recall Process

In the recall process of the proposed model, when the
pattern X is given to the I/O Layer, the output of the neuron
i in the Map Layer, x|“” is calculated by

x{nup:{l’ (l'Zl").
i 0, (otherwise)

where r is selected randomly from the neurons which sat-
isfy

(14)

1
Nin

D8 = Wa) < 6"
keC

5)

where N is the number of neurons which receive the input
in the I/O Layer. g(-) is given by

L, (Il < 6%)

0, (otherwise) (16)

g(h) = {
where ¢¢ is the threshold, and 6™ is the threshold of the
neuron in the Map Layer.

In the proposed model, one of the neurons whose con-
nection weights are similar to the input pattern are selected
randomly as the winner neuron. So, the probabilistic asso-
ciation can be realized based on the weights distribution.
For example, if the training patterns including the common
term such as {X, Y}, {X, Y,} are memorized, and the num-
ber of the neurons whose connection weights are similar
to the pattern pair {X, Y} is larger than the number of the
neurons whose connection weights are similar to the pat-
tern pair {X, Y,}, then the probability that the pattern pair
{X,Y} is recalled is higher than the probability that the
pattern pair {X, Y} is recalled.

When the binary pattern X is given to the I/O Layer, the
output of the neuron k in the I/O Layer x;'{” is given by

io _ 17
X, = 0

where 92” is the threshold of the neurons in the I/O Layer.
When the analog pattern X is given to the I/O Layer, the
output of the neuron k in the I/O Layer xj(" is given by

Wy > 67)

(otherwise) an

X = W (18)

3. Computer Experiment Results

Here, we show the computer experiment results to
demonstrate the effectiveness of the proposed model.
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Table 1: Relation between Area Size and Recall Times.

Proposed Model
= grw 070
Conventional Model [11]

Input Output # of Neurons | Recall Times
Pattern 1 | Pattern A 35(3.2) 270 (3.3)
Pattern B 11(1.0) 82 (1.0)
Pattern C 19 (1.7) 148 (1.8)
Pattern 2 | Pattern D 23(1.4) 208 (1.5)
Pattern E 17 (1.0) 152 (1.1)
Pattern F 17 (1.0) 140 (1.0)

Recall Rate
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Table 2: Relation between Area Size and Recall Times (Af-
ter Resizing of Areas).

Input Output # of Neurons | Recall Times
Pattern 1 | Pattern A 105 (9.5) 294 (9.8)
Pattern B 55 (5.0) 176 (5.9)
Pattern C 11 (1.0) 30 (1.0)
Pattern 2 | Pattern D 35 (5.0) 176 (5.2)
Pattern E 70 (10.0) 290 (8.5)
Pattern F 7 (1.0) 34 (1.0)

(a) Robustness for Noisy Input

1.0

0.8

0.6

0.4

3.1. Relation between Area Size and Recall Times

Here, we examined the relation between the area size and
the recall times of the proposed model. In this experiment,
six pattern pairs including 1-to-3 relations were memorized
in the proposed model. Table 1 shows the relation between
the area size and the recall times. And Table 2 shows the
relation between the area size and the recall times after
the resizing of areas. As shown in these tables, the pro-
posed model can realize probabilistic association based on
the weights distribution, and can modify the weights dis-
tribution by the increase and decrease of neurons in each
area.

3.2. Robustness for Noisy Input/Damaged Neurons

Figure 3 shows the robustness for noisy input/damaged
neurons in the proposed model. As shown in these figures,
we confirmed that the proposed model has robustness for
noisy input/damaged neurons.

4. Conclusions

In this paper, we have proposed the Kohonen Feature
Map Probabilistic Associative Memory based on Weights
Distribution and Area Neuron Increase and Decrease. We
carried out a series of computer experiments and confirmed
the effectiveness of the proposed model.
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