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Abstract—This paper shows some results of laboratory
experiment for bifurcation phenomena on the forced Al-
pazur oscillator. The oscillator denotes some special phe-
nomena in some parameter settings and are called chaos or
bifurcation. The chaos is defined as the state of disorder
and occurred by the bifurcation. Therefore the bifurcation
should almost always be avoided to occur. Especially in
these days, an idea to solve these problems on the forced
Alpazur oscillator is proposed. However laboratory experi-
ments for the idea have never been done. Laboratory exper-
iments are important to confirm whether numerical analy-
ses are correct or not.

1. Introduction

In nonlinear dynamical systems, there are some special
phenomena called nonlinear phenomena observed on cer-
tain parameter settings. The bifurcation and the chaos are
typical phenomena of them and are well researched for a
long years. The bifurcation is changing of system behavior
and caused by changing of local or global properties; there-
fore, there are some types of bifurcations just like follows:
local bifurcation: tangent bifurcation, period-doubling bi-
furcation and so on, and global bifurcation: grazing bifur-
cation, saddle-node bifurcation and so on. The bifurcations
affect qualitative properties of systems and sometimes let
system behavior be chaotic; here, the behavior is called the
chaos. Since the chaos is a state of disorder, it should be
avoided and bifurcation analysis is very important.

In these years, the systems with discontinuity are re-
searched actively [1][2][3]. For representative example, the
previous study by Tamura[2] shows bifurcation analysis for
the Izhikevich neuron model, which has a discontinuous
characteristic on state space. On the other hands, the study
[3] shows how to control the behavior of the nonlinear sys-
tems with interruptions. Especially in those studies, we did
bifurcation analysis of the systems with an external force
that is constantly added on previous study[4] [5]. Above
all, the study[5] shows the result of bifurcation analysis
for the forced Alpazur oscillator by numerical computa-
tion. However, the study is just only by numerical analysis
and there are no result from laboratory experiments. Cir-

cuit implementation is important to confirm the numerical
result from the stand point of experiments. Thus, we try a
laboratory experiment for the system picked up in [5] and
confirm whether the numerical analyzed result is correct or
not.

2. The forced Alpazur oscillator

The Alpazur oscillator, is proposed by Kawakami and
Lozi[6], is one of the simple oscillators that has a switching
and a nonlinear element. On previous study[5], an external
force is added on the oscillator and is realized by circuit
shown in Fig. 1. In addition, the circuit equations are give

Figure 1: Circuit diagram of the forced Alpazur oscillator

as follows:

L
di
dt
= −ri − v + V0 + V cosωV t

C
dv
dt

=


i −G(v) +

E1 − v
R0 + R1

( if SW is at α)

i −G(v) +
E2 − v

R0 + R2
( if SW is at β).

(1)
Solution orbits of the model are switched at their bound-
aries caused by the SW

H =
{
(i, v) ∈ R2 | v > vh

}
B =
{
(i, v) ∈ R2 | v < vb

}
∂H =

{
(i, v) ∈ R2 | v = vh

}
∂B =

{
(i, v) ∈ R2 | v = vb

}
. (2)
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Now we assume that b > h. The behavior of the state is
described as follows:

1. The flow starting from an arbitrary initial point moves
within the half plane H or B, defined by Eq. (1).

2. If the flow reaches the edge ∂H or ∂B, then switching
occurs.

From the above, Fig. 2 shows an example of the circuit
responses.

Figure 2: Conceptual figure for boundaries.

By rescaling

x̂ =
√

Li, ŷ =
√

Cv, t′ =
1
√

LC
t, (3)

assuming
G(v) = −a1v + a3v3, (4)

putting

r1 =
1

R0 + R1
, r2 =

1
R0 + R2

, k = r

√
C
L
,

V̂0 = V0

√
C
L
, V̂ = V

√
C
L
, ω̂v =

√
LCωv,

g1 = 1 − (a1 − r1)

√
L
C
, g2 = 1 − (a1 − r2)

√
L
C
,

c3 =
3a3

C

√
L
C
, B̂1 = r1

√
LE1, B̂2 = r2

√
LE2, (5)

and relabeling t′ as t, we have the normalized equation

dx
dt

= −kx − y + V̂0 + V̂ cos ω̂V t

dy
dt

=


x + (1 − g1)y − 1

3
y3 + B1 if the SW is α

x + (1 − g2)y − 1
3

y3 + B2 if the SW is β

,

(6)
where,

x̂ = γx, ŷ = γy, γ =

√
1

C3
, B̂1 = γB1, B̂2 = γB2. (7)

By normalizing, the boundaries are scaled as

H =
{
(x, y) ∈ R2 | y > h

}
B =
{
(x, y) ∈ R2 | y < b

}
∂H =

{
(x, y) ∈ R2 | y = h

}
∂B =

{
(x, y) ∈ R2 | y = b

}
, (8)

where,

h =

√
C
γ

vh, b =

√
C
γ

vb. (9)

3. Bifurcations and Chaotic attractor

From the result of previous study[5], analysis method
for the bifurcation problem on the forced Alpazur oscil-
lator is suggested; and Fig. 3 is the bifurcation diagram
we got by the method. Here we set the static parameters
k, V̂0, ω̂Vg1, g2, B2, h and b as follows:

k = 0.1, V̂0 = 0, ω̂V = 1.26, g1 = 0.2,
g2 = 2.0, B2 = 5.0, h = −1.0, b = −0.1. (10)
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Figure 3: V̂ – B1 plane of the bifurcation diagram.

On Fig. 3, Ii and NS i are period-doubling bifurcation
and Neimark-Sacker bifurcation from i-periodic orbit, re-
spectively. For example at point A, the solution orbit be-
comes 1-periodic orbit shown on Fig. 7; and by crossing
I1, at point B, the solution becomes 2-periodic orbit shown
on Fig. 8. In addition, chaotic attractor shown on Fig. 11
is observed at point C.

4. Laboratory implementation

On this study, some parameters on Eq.(1) are fixed as
L = 50[mH], C = 0.09[µF], r = 113[Ω], R0 = 0[Ω],

- 170 -



Figure 4: Rigid circuit diagram.

R1 = 811.7[Ω], R2 = 212.9[Ω], V0 = 0[V], ωV =

1.88×103[rad/s] and E2 = 6[V] and the others V and E1 are
variable. Figure 4 shows a rigid circuit diagram we imple-
mented. For the nonlinear resistor, the FET K30A-GR and
op-amp TL071CP is used and then Fig. 5 shows the non-
linear characteristic of the resistor. Here the broken line is
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Figure 5: Characteristic of the nonlinear resistor.

G(v) , from fitting by GNUPLOT, and a1 and a3 on Eq. (4)
are

a1 = 1.63716 × 10−3, a3 = 3.67962 × 10−6. (11)

For the SW, analog switch IC ADG413 is used on the right
side of Fig. 4. Figure 6 shows a real circuit we imple-
mented.

Figures 9–12 show results of numerical and laboratory
experiments. From Fig. 9 to Fig. 10, solution orbit of
this system occurs period-doubling bifurcation on labora-
tory experiment as well as on numerical experiment. As
the same on Fig. 12, the chaotic attractor is observed.

5. Conclusion

We implemented the forced Alpazur oscillator on real
circuit and confirmed that the bifurcation analysis by nu-

Figure 6: Real circuit.

merical method[5] is exactly correct from the stand point
of laboratory experiments. Bifurcations observed from nu-
merical experiments are observed in real circuit similarly.
Also we have observed chaotic attractor on certain param-
eter setting either in numerical computation and in real cir-
cuit.
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Figure 7: 1-periodic orbit at point A.
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Figure 8: 1-periodic orbit at point B.

Figure 9: V = 9[V], E1 = −3.0[V]. Figure 10: V = 9[V], E1 = −4.0[V].
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Figure 11: 1-periodic orbit at point C.

Figure 12: V = 0.4[V], E1 = 0.1[V].
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