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Abstract—Analytical and exact solutions of the period-
three orbits exhibited by the delayed logistic map are pre-
sented. Expressions are obtained by applying the harmonic
balance method and Gröbner bases to an equivalent single-
input single-output representation of the system. A detailed
study of the effect of the delays on the appearance of bista-
bility phenomenon is also included.

1. Introduction

There exists a great variety of discrete maps coming
from different branches of science which develop a period
doubling (PD) cascade as one of the parameters is varied.
Among the extensive list of examples, it can be mentioned:
population models in Biology [1, 2], cardiac activity mod-
els in Medicine [3], structure markets in Economics [4],
impact systems in Mechanics [5], the modulated lasers in
Physics [6, 7], etc. In many of these applications, logistic
map has played a remarkable role in the description of the
dynamical scenarios.

Classical cascades consist in the successive unfolding
of PD bifurcations leading to the existence of period-2k

(k>1) orbits around the fixed point. This sequence con-
forms a widely-known route to chaos [8, 9]. Once the
chaotical scenario is achieved, dynamics alternates be-
tween periodic and chaotic windows. Perhaps, the most
singular periodic window is the one originated by a period-
three (P3) saddle-node bifurcation. In scalar maps, it gives
rise to the noted phrase “period-three implies chaos” [10].

In the chaos control technique proposed by Pyragas [11],
unstable periodic orbits inside the cascade can be stabilized
by using time-delayed versions of the states in the feedback
loop. Besides its simplicity, this controller can provoke the
appearance of the so-called bistability phenomenon [12].
Thus, for example, it is possible to find that P3 orbits coex-
ist with the desired dynamics. Due to the inherent increase
in the dimension of the systems, these nonlinear phenom-
ena are usually study by making numerical simulations [7].

In this paper, P3 orbits exhibited by the delayed version
of the logistic map are characterized analytically. Develop-
ments are based on an input-output representation of the
system, a Fourier decomposition of the orbit and a bal-
ance of the involved harmonics [13]. Exact solutions of the

periodic points are obtained for any arbitrary delay value.
This is possible thanks to the application of Gröbner bases
to the resulting set of polynomials [14]. Results comple-
ment those presented in [15] concerning the appearance of
period-four oscillations in a family of quadratic maps. Pre-
vious analytical developments related to periodic orbits in
the scalar logistic map can be found in [16, 17].

The paper is organized as follows. In Section 2, the
equivalent input-output representation of the delayed logis-
tic map is described. The set of polynomials with triangular
structure that permits to obtain the exact expressions of the
P3 orbits is presented in Section 3. Critical conditions for
the appearance of these solutions as a function of the time
delays are included in Section 4. Finally, conclusions are
summarized in Section 5.

2. Input-output representation

The delayed version of the logistic map is given by

xk+1 = αxk(1 − xk) − η(xk−σ − xk), (1)

where α is the growth rate of the original system (α ≥ 1),
η is the control gain (−1 < η < 1) and σ is the proposed
delay in time (σ ≥ 1). The control term implies an increase
in the dimension of the system. In fact, (1) can be rewritten
as the (σ + 1)-dimensional state-variable map

xk+1 = Axk + B[αyk
2 − (α + η)yk], (2)

where yk = Cxk and

A =

(
0 −η
Iσ×σ 0

)
, BT = C =

(
1 0 · · · 0

)
.

This extension can be overcome representing the map as
the L’ure system of Fig. 1 consisting of a dynamical linear
block G(·) connected to a nonlinear and static function f (·)
by means of a feedback loop. The variables are input vk,
error ek and output yk. Since vk is assumed to be zero, the
input of G(·) is directly uk = − f (yk).

Following routine calculations and applying the z-
transform, the equivalent input-output representation is

G(z) =
zσ

zσ+1 + η
, (3)

f (yk) = αy2
k − (α + η)yk. (4)
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Figure 1: Input-output representation.

Notice that G(z) is a scalar rational function, yk ∈ R and
f (·) : R → R. Thus, the (σ + 1)-dimensional original
system reduces to an interconnection between two scalar
functions independently of the arbitrary delay value.

Fixed points are obtained via the equation ŷ = −G(1) f (̂y)
where G(1) = 1/(1 + η) is the response of linear block
to frequency ω = 0 (z = ei0 = 1). As it is known, the
Pyragas control law maintains the fixed points of the orig-
inal map, i.e. ŷ− = 1 − 1/α and ŷ+ = 0. The stability of
each ŷ± is determined by means of the open-loop function
G(z)J where J = Dy f (̂y±) = 2α̂y± − (α + η). In partic-
ular, if G(eiω)J = −1 + i0 for certain ω = ωo, the fixed
point will change its stability condition [13]. Thus, it can
be affirmed that ŷ+ is always unstable but the dynamical
scenario around ŷ− depends on the gain and delay values.

As it is shown in [15], delayed logistic map develops PD
bifurcations but the characteristics of respective P2 orbits
depends on the σ parity. In fact, the critical condition is
equal to that of the original map (α = 3) for even σ val-
ues while it is changed to α = 3 + 2η for odd σ values,
modifying the interval where ŷ− is stable. Period-three so-
lutions exhibited by (1) are analyzed in the following. The
equivalent input-output representation will facilitate the ap-
plication of the harmonic balance method for the character-
ization of these orbits.

3. Exact period-three solutions

The Fourier decomposition of a P3 orbit can be ex-
pressed as

yk = ŷ + Y0 + Y3ei 2π
3 k + Y3e−i 2π

3 k, (5)

where ŷ = ŷ−, Y0 ∈ R is a correction of ŷ to achieve the
center or average value Ỹ0 = ŷ + Y0 of the oscillation and
Y3 = Y3R + iY3I ∈ C, together with its conjugate Y3, rep-
resents the amplitude of the unique harmonic ei2π/3k. Thus,
the three periodic points are: y1 = ŷ + Y0 − Y3R −

√
3Y3I ,

y2 = ŷ + Y0 − Y3R +
√

3Y3I and y3 = ŷ + Y0 + 2Y3R.
Considering that (5) is the input of the nonlinear block

(4), the respective output f (yk) is calculated. Making some
algebraic manipulations, it is obtained

f (yk) = f (̂y) + F0 + F3ei 2π
3 k + F3e−i 2π

3 k,

where

F0 = (α − 2 − η)Y0 + α(Y2
0 + 2|Y3|

2), (6)

F3 = (α − 2 − η)Y3 + α(2Y0Y3 + Y
2
3). (7)

As can be seen, f (yk) preserves the harmonic decomposi-
tion of the proposed yk. Since ek = − f (yk) is the input of
the linear block G(·), the loop in Fig. 1 is closed by estab-
lishing the harmonic balance

Y0 = −G(1)F0, (8)

Y3 = −G(ei 2π
3 )F3, (9)

where G(ei 2π
3 ) is the response of G(·) at a frequency

ω = 2π/3 (z = ei2π/3).
Combining (6) to (9), it results a set of two polynomi-

als in the complex variables Y0 and Y3. Assuming that
G(ei 2π

3 )J , −1 + i0 (since resonances 1:3 are not analyzed)
and denoting G1 = G(1) and G(ei 2π

3 ) = G π
3 R + iG π

3 I , balance
equations can be transformed into three polynomials in Y0,
Y3R and Y3I with real coefficients given by

Y0 = −G1(α − 2 − η)Y0 + G1α
(
Y2

0 + 2Y2
3R + 2Y2

3I

)
,

Y3R = −G π
3 R

[
(α − 2 − η)Y3R + α(2Y0Y3R + Y2

3R − Y2
3I)

]
+G π

3 I
[
(α − 2 − η)Y3I + α(2Y0Y3I − 2Y3RY3I)

]
,

Y3I = −G π
3 R

[
(α − 2 − η)Y3I + α(2Y0Y3I − 2Y3RY3I)

]
−G π

3 I

[
(α − 2 − η)Y3R + α(2Y0Y3R + Y2

3R − Y2
3I)

]
.

Due to the involved complexity, the real roots of the
resulting polynomial system are found by using Gröbner
bases. This algebraic algorithm generates a new polyno-
mial set with the same ideal to that of the original one,
preserving the same roots [14]. To facilitate the algebraic
manipulation, Y0 is replaced by Ỹ0 − ŷ. Thus, it is defined
the set of polynomials P = {p1, p2, p3} with

p1 = [1 − (α + η)G1]Ỹ0 + αG1Ỹ2
0 + 2αG1Y2

3R+ 2αG1Y2
3I ,

p2 = [1 − (α + η)G 2π
3 R]Y3R +(α + η)G 2π

3 IY3I +2αG 2π
3 RỸ0Y3R

−2αG 2π
3 I Ỹ0Y3I +2αG 2π

3 IY3RY3I +αG 2π
3 RY2

3R− αG 2π
3 RY2

3I ,

p3 = [1 − (α + η)G 2π
3 R]Y3I−(α + η)G 2π

3 IY3R+2αG 2π
3 RỸ0Y3I

−2αG 2π
3 RY3RY3I +2αG 2π

3 I Ỹ0Y3R+αG 2π
3 IY

2
3R− αG 2π

3 IY
2
3I .

Fixing the variable order Ỹ0 ≺ Y3R ≺ Y3I and consid-
ering the coefficients in P are rational functions of the pa-
rameters, a Gröbner basis composed by four polynonials is
obtained. The one depending on Ỹ0 can be factorized as
0 = Ỹ0(1 − α + αỸ0)g0 where

g0 = 2G1

[
1 − 2(α + η)G 2π

3 R + (α + η)2|G(ei 2π
3 )|2

]
+α

[
8G1G 2π

3 R + (1 − 9(α + η)G1)|G(ei 2π
3 )|2

]
Ỹ0

+9α2G1|G(ei 2π
3 )|2Ỹ2

0 .

Only the roots of g0 correspond to the P3 orbits since they
are solutions of P = 0 for Y3R , 0 and Y3I , 0. The rest
are solutions of P = 0 for Y3R = Y3I = 0. So, to find the
expressions of the Fourier coefficients representing the P3
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Table 1: Frequency response for different delay values
Delays (mod 3) G 2π

3 R G 2π
3 I

σ ≡ 0 − 1
2 +η

1−η+η2
−
√

3
2

1−η+η2

σ ≡ 1 −
1+η

2(1−η+η2)
−
√

3(1−η)
2(1−η+η2)

σ ≡ 2 −
1+η

2(1+2η+η2) −

√
3(1+η)

2(1+2η+η2)

solutions, the algebraic algorithm is applied again but now
to P̃ = P ∪ g0. Thus, the Gröbner basis reduces to three
polynomials with triangular structure {g0, g3R, g3I} where

g3R = G1(α + η)[11(α + η)G1 − 32]G 2π
3 R|G(ei 2π

3 )|2

+G1(α + η)2[16 − 9(α + η)G1]|G(ei 2π
3 )|4

−G2
1(7G 2π

3 R − 5(α + η)G2
2π
3 R

+ 9(α + η)G2
2π
3 I

)

+16G1|G(ei 2π
3 )|2−2α

[
G2

1(5G2
2π
3 R
−9G2

2π
3 I

)−4|G(ei 2π
3 )|4

−9G1(α + η)[(α + η)G1 − 2]|G(ei 2π
3 )|4

−10G1G 2π
3 R|G(ei 2π

3 )|2
]
Ỹ0 − 27αG2

1|G(ei 2π
3 )|2Y3R

+27α(α + η)G2
1|G(ei 2π

3 )|2
[
2G 2π

3 R−(α + η)|G(ei 2π
3 )|2

]
Y3R

−108α2G2
1G 2π

3 R|G(ei 2π
3 )|2Ỹ0Y3R

+108α2G1|G(ei 2π
3 )|4Ỹ0Y3R− 324α3G2

1|G(ei 2π
3 )|4Y3

3R,

g3I = G1

[
1 − 2(α + η)G 2π

3 R + (α + η)2|G(ei 2π
3 )|2

]
+4α

[
G1G π

3 R − |G(ei 2π
3 )|2

]
Ỹ0 − 9αG1G 2π

3 RY3R

+9αG1(α + η)|G(ei 2π
3 )|2Y3R − 18α2G1|G(ei 2π

3 )|2Ỹ0Y3R

−18α2G1|G(ei 2π
3 )|2Y2

3R − 9αG1G 2π
3 IY3I ,

and main coefficients are not zero since G1 , 0 and reso-
nance 1:3 (G 2π

3 I , 0) is omitted.

Polynomial g0 corresponds to the Ỹ0 solutions. The oth-
ers two permit the calculation of Y3R and Y3I recursively.
Notice that there could exist up to two possible solutions
of Ỹ0 and, for each of them, up to three values of Y3R and
Y3I . The exact amount of real solutions is determined by
the sign of the discriminant of the polynomials.

4. Delay dependence

The linear dynamical function (3) evaluated at ω = 2π/3
is given by G 2π

3
= eiσ 2π

3 /(ei(σ+1) 2π
3 + η). Since ω = 2π/3

corresponds to the complex third root of unity and also
eiσ 2π

3 = ei(σ̃+3s) 2π
3 = eiσ̃ 2π

3 with σ̃ = 0, 1, 2 and s ∈ Z,
G 2π

3
presents three types of responses according to the σ

values in modulus 3, as listed in Table 1. This implies that
the discriminant of g0, denoted as ∆Ỹ0

, reduces to the three
different expressions given in Table 2. In all cases, it can
be affirmed that the delayed map does not present P3 orbits
whenever ∆Ỹ0

< 0, since there do not exist real Ỹ0 solutions.

Table 2: Critical conditions for the onset of P3 orbits
Delays (mod 3) ∆Ỹ0

= 0
σ ≡ 0 α − 1 − 2

√
2 = 0

σ ≡ 1 α − 1 − 2
√

2
√

1 − η + η2 = 0
σ ≡ 2 α − 1 − 2

√
2
√

1 + 2η + η2 = 0

For ∆Ỹ0
≥ 0, the two Ỹ0 solutions are real. Now, for

those parameter combinations, it also occurs that the dis-
criminant of g3R is different from zero. In fact, g3R always
has three real roots. So, the two roots of Ỹ0 plus the three
roots of Y3R (Y3I) conform the six periodic points involved
in the two different P3 orbits (one stable and one unstable)
of the system. Therefore, expression ∆Ỹ0

= 0 can be seen
as the critical condition for the occurrence of the defined
P3 saddle-node bifurcation.

Critical curves in the plane (α,η) indicating the appear-
ance of the PD bifurcation (starting point of the PD cas-
cade) and the P3 saddle-node bifurcation for different de-
lays are depicted in Figs. 2(a)-(b). The dynamical scenario
is equal to that of the original logistic map only for even σ
values congruent with 0 [Fig. 2(a)]. For even delays con-
gruent with 1, the P3 saddle-node bifurcation emerges after
the PD cascade, but, at lower (higher) α values when η > 0
(η < 0). For even delays congruent with 2, there exist two
possible scenarios: P3 orbits occur after the PD cascade
(η > 0) or they coexist with stable attractors such as P2
orbits or the fixed point (η < 0).

Bistability phenomena can also be detected for odd σ
values [Fig. 2(b)]. In this case, P3 orbits coexist with dif-
ferent stable attractors when delays are congruent with 0 or
1 and η > 0. Figure 3 illustrates the coexistence of stable
P2 and P3 orbits for σ = 1 and η = 0.2. For odd delays
congruent with 2, the P3 saddle-node bifurcation goes al-
ways after the PD cascade, occurring at lower (higher) α
values respect to 1 + 2

√
2 when η < 0 (η > 0).

5. Conclusions

Exact expressions of the P3 orbits exhibited by the de-
layed logistic map have been obtained. Results are based
on a simple input-output representation of the system, the
Fourier decomposition of the orbit and the application of
the harmonic balance method. The reduced set of quadratic
polynomials is solved by using Gröbner bases.

Analytical results permit to formalize conditions for the
appearance of bistabilities. Period-three attractors can co-
exist with the stable fixed point and even with other stable
periodic orbits for even delays congruent with 2 (mod 3). In
the case of odd delays, bistable scenarios occur whenever
σ values are congruent with 0 or 1 (mod 3).
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Figure 2: Critical curves corresponding to PD and P3
saddle-node bifurcations: (a) even delays; (b) odd delays.
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