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Abstract—Computational models are an indispensable
tool for understanding the mechanism of the brain. Previ-
ous studies employ reservoir computing to construct a pre-
dictive coding model and have shown its ability to repli-
cate the brain’s properties. However, reservoir computing
models cannot be directly applied to broad brain functions
due to performance limitations. Here, we propose a visual
predictive coding model with reservoir computing that can
handle the high-dimensional input to extend the scope of
the application. We confirmed that our model could solve
reinforcement learning tasks in a three-dimensional envi-
ronment and that visual images can be reconstructed from
the prediction by the reservoir. We believe that our ap-
proach presents a novel dynamical mechanism of visual
processing in the brain and fundamental technology for a
brain-like artificial intelligence system.

1. Introduction

Mammalian’s visual system has essential functions to
understand the surrounding environment, such as object
recognition and scene understanding. In addition, numer-
ous brain functions involve visual systems as an indis-
pensable component. Hence, understanding the underlying
mechanism of the visual system is the key to implementing
efficient artificial intelligence and curing neural diseases.

Predictive coding is a generally accepted theory in neu-
roscience that the different brain areas compose a hierar-
chical generative model. In this theory, the brain acquired
a model of the external world since each brain area predicts
the state of the lower area or sensory information, and areas
learn to minimize the prediction error. The predictive cod-
ing with reservoir computing (PCRC) model employs the
reservoir computing framework to implement that theory.
Reservoir computing (RC) [5] is one of the recurrent neu-
ral networks’ architectures and has recently gained much
attention for its computational efficiency. Several studies
have extended the PCRC model and shown the capability to
model the brain functions in its internal dynamics [10, 12].
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Figure 1: Schematic illustration of the model

Besides, deep learning models have been widely ap-
plied as brain models since they could replicate broad brain
functions with superb performance. Yamins and DiCarlo
suggested that the model’s objective is essential in build-
ing a deep learning model of the sensory cortex because
the model must be effective as the brain at solving the
tasks [11]. Indeed, the machine learning model for a def-
inite purpose, such as classification, achieved great suc-
cess in replicating sensory cortex properties [6, 3]. How-
ever, these models are not appropriate for revealing detailed
computation of the system and processing time-varying in-
formation.

The PCRC model seems suitable for studying sensory
systems since RC has a simple architecture and performs
well on nonlinear dynamical modeling. Also, the imple-
mentation of the reservoir by spiking neurons suggests that
idea [8]. However, stimuli in previous studies are confined
to low-dimension inputs due to the reservoir’s limited per-
formance. Thus, the range of visual systems’ characteris-
tics that the PCRC model can handle is narrow compared
to deep learning models.

In order to address this problem, this paper proposes an
extension of the PCRC model capable of processing high-
dimensional input by applying a variational autoencoder.
We examine the model performance on behavioral tasks
in a three-dimensional environment. As a relevant study,
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there is a convolutional reservoir computing model [2] that
utilizes a fixed random-weight CNN to reduce the dimen-
sion of inputs. However, because of using CNN, the model
cannot be used as a generative model.

2. Model

2.1. The model architecture

Figure 1 shows the schematic illustration of our model,
which consists of an encoder and the reservoir. The en-
coder compresses raw visual input into low-dimensional
features to make the reservoir capable of doing vision tasks
in a three-dimensional environment. We took this encoder
from a variational autoencoder pre-trained by the COCO
Dataset [7], which includes over 10,0000 natural images.
The reservoir works in a predictive coding manner based
on Fukino et al’s model [4]. The internal dynamics of the
reservoir is governed by following equations.

zit+1)=(- T)m(t)+%(Wrecy(t) + W2 ()

+W(d() - 2(1)),
y(t) = tanh x(7), 2)

where x(¢) € RY is the internal state of dynamic reservoir,
y(t) € RY is the activity of dynamic reservoir, z() € RM
is the prediction, d(t) € RM s the input from the encoder,
Wwree € RV s the reccurent weight matrix, W/? € RVM
is the prediction feeedback weight matrix, and W*” €
RY*M is the prediction error feedback weight matrix. W/,
We” and W’ are fixed at sparse and random values.
The prediction is obtained by

z(1) = W*(t - D), 3

where W € RM*N is the prediction weight matrix that is
updated by FORCE procedure [9].

2.2. Reinforcement learning

The model determines action as the index of maximum
elements of q(¢) with probability 1 — &(¢) and otherwise the
model takes a random action.

a(t) = arg max g;(0), 0)

1

where q(f) € R” is the value of taking action, which is
estimated by following equation.

q(n = Wit - Dy(), ®

Wi(t) € RV is updated by online reinforcement learn-
ing algorithm [13] as follows.

Wit +1) = Wi
+ (DR + yqu (t + 1) — qu(D)y(D)

where R(¢) is the reward obtained from the environment,
n(t) is the learning rate changed according to success rate
of the last 100 episodes, and v is the discount rate.
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Figure 2: Example of the environment (a) Agent’s view (b)
Top-down view of the environment.

3. Experiments

We evaluate the model’s performance on two tasks in-
spired by the function of the ventral and dorsal streams.

3.1. Location task

This task requires an agent to reach a specific location
determined when the map is created. Contrary to the goal’s
location, the agent spawn from a random location in each
episode. The agent gets one reward if they reach the goal
and otherwise zero. To behave efficiently, the agent should
possess a map-like spatial representation of the environ-
ment.

3.2. Object task

This task requires an agent to fetch a target object. The
target’s location and the agent’s spawn location are ran-
domly determined at the onset of each episode. The agent
gets one reward if they reach the object and otherwise zero.
Having the representation of the target object is adequate
for the agent to achieve the task.

3.3. Environment

We use DeepMind Lab platform [1] for generating envi-
ronments in this paper. Figure 2 shows the example of the
agent’s view and top-down view of the environment. The
environment layout is randomly generated at each game
depending on the seed, and specific constraints such as
map size and maximum room number. Since an identical
method generates the environment layout for both tasks,
the difference between them is limited to the objective.

4. Results

Figure 3 shows the average reward the agent acquired
during 5000 episodes. In both tasks, the agent learned
to obtain a certain amount of reward. This result shows
that the model can process the first-person view in a three-
dimensional environment to select actions.
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Figure 3: Average reward during 5000 episodes. Blue line
represents the mean of 5 games and light blue area repre-
sents standard deviation. (a) In the location task (b) In the
object task

Figure 4 shows the agent’s trajectory in 100 episodes af-
ter training. The upper figures are for the location task, and
the lowers are for the object task. The pattern of behav-
ior differs between the two tasks. In the location task, the
agent focused on exploring the room and transitioned be-
tween rooms with low probability. In the object task, agents
transitioned between rooms by moving along the walls and
subsequently explored the room to obtain a reward.

Figure 5 shows visual input and model’s prediction. The
left frame is the raw visual input, the center frame is the
reconstructed raw visual input through the decoder, and
the right frame is the reconstructed prediction of the model
through the decoder. We can confirm that the model suc-
cessfully predicts the input. Furthermore, the reconstructed
prediction resembles raw visual input more than the recon-
structed raw visual input.

5. Discussion

This paper proposed the extension of the PCRC model
combined with a variational autoencoder. We examined the
model’s performance on two tasks and confirmed model
could learn behavior in the three-dimensional world.

However, the behavior the model learned was not opti-
mized well. In the location task, the agent learned to ex-
plore all rooms randomly despite the most efficient way to
obtain a reward is to memorize the goal location and pass
the shortest pathway. The possible cause is that the model’s
capacity is insufficient to possess a spatial map in internal
dynamics. The model must behave as well as animals to be
compared to the brain. Therefore, we need to improve the
model’s performance in future work.
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Figure 5: Visual input and model’s prediction. Left frame
is the visual input. Center frame is the reconstructed visual
input through the decoder. Right frame is the reconstructed
prediction through the decoder.
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