
Mental simulation on reservoir computing as an efficient planning method for
mobile robot navigation

Yoshihiro Yonemura†, and Yuichi Katori†‡

†The School of Systems Information Science, Future University Hakodate
116–2 Kamedanakano-cho, Hakodate, Hokkaido 041-8655, Japan

‡The Institute of Industrial Science, The University of Tokyo
4–6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan

Email: katori@fun.ac.jp

Abstract—Machine learning methods have been ap-
plied for autonomous mobile robot navigation. Despite the
achievement of the methods, their learning cost is the most
significant remaining problem. We propose a mental sim-
ulation framework on reservoir computing to perform ef-
ficient learning and action planning. Mental simulation is
a process that simulates the interaction between the model
and the environment. Reservoir computing is appropriate
for mental simulation because it can process complex time
series efficiently. In this research, we implemented action
planning with mental simulation on reservoir computing,
and we confirmed that the robot could reach the target point
by the planning.

1. Introduction

Autonomous control is a widely researched technology
that performs various tasks without external direct control.
Recently, deep neural network and reinforcement learning
have been applied to the autonomous mobile robot control
[9]. These machine learning methods enable to construct
control model with only setting a reward corresponding to
the success or failure of each task. However, it requires
many data. Two reasons cause this problem: deep neu-
ral networks need to optimize many parameters, and rein-
forcement learning requires many trials to obtain enough
samples of a task.

A reservoir computing model with reinforcement learn-
ing has been proposed [3][8]. Reservoir computing can
process complex time series with only learning relatively
few parameters by using complex dynamics of randomly
connected recurrent networks [4]. Antonelo et al. have
proposed a navigation model for mobile robots based on
reservoir computing and reinforcement learning [1], and
the model performs navigation tasks with relatively few
sensors and parameters.

We propose a mental simulation framework for reservoir
computing. Mental simulation is to simulate the interac-
tion between the model and the environment [2]. Mental
simulation can perform the action planning and learning

ORCID iDs Yoshihiro Yonemura: 0000-0002-7527-233X, Yuichi
Katori: 0000-0003-2773-0786

by using the simulated experience. The reservoir comput-
ing model is appropriate for mental simulation because it
can reconstruct complex novel information from its inter-
nal dynamics. Moreover, its physical implementation en-
ables high-speed computation with high power efficiency,
which is helpful for mental simulation. In the following
sections, we show that the mental simulation performs ac-
tion planning on the autonomous mobile robot navigation
task.

2. Model and Experiments

We use the mobile robot used by Inada et al. [3] with
some extensions. The robot observes distance to object,
self-location, and self-direction. The robot sequentially se-
lects one of three possible actions: turning left, turning
right, and moving forward. The mobile robot is controlled
by the predictive coding with reservoir computing model
[5] shown in Figure 1. Predictive coding is the computa-
tional model that updates its internal state while predicting
the sensory information [6].

d

y

e

Prediction

Prediction
error

Reservoir

Sensory
information

q Action
Value

a Action

Figure 1: Reservoir computing model for autonomous con-
trol. The model is composed of six parts: dynamical reser-
voir, sensory information d, prediction y of the sensory
information, prediction error e, action value q, and next
action vector a.

The model receives sensory information d(n) which is
composed of three components: distance between the robot
and obstacles for each direction v ∈ R32, self-location en-
coded in place cell representation v(PC) ∈ R11×11, self-
direction encoded in head direction cell representation

– 83 –

2022 International Symposium on Nonlinear Theory and Its Applications,
NOLTA2022, Virtual, December 12-15, 2022

This work is licensed under a Creative Commons Attribution NonCommercial, No Derivatives 4.0 License.

https://orcid.org/0000-0002-7527-233X
https://orcid.org/0000-0003-2773-0786

v(HD) ∈ R12, and reward R ∈ R. The place cell repre-
sentation v(PC) corresponding to the self-location (x, y) is
determined as following equation:

v(PC)
i = exp

− (x − xi)2 + (y − yi)2

σ2
pc

, (1)

where (xi, yi) denote the center of the receptive field of ith
place cell, and σ2

pc denotes width of receptive field. The
head direction cell representation v(HD) corresponding to
the self-direction θ is determined as following equation:

v(HD)
i = exp

− (θ − θi)2

σ2
hd

, (2)

where θi denotes the center of the receptive field of ith head
direction cell, and σ2

hd denotes width of receptive field. The
model generate the prediction y(n) of the sensory informa-
tion d(n) from the firing rate r(n) of the reservoir neurons
as following equation:

y(n) = W (S ensor)
out r(n). (3)

The model simultaneously generates the action value q(n)
from the firing rate r(n), and select next action a(n + 1)
based on ε-greedy policy; the model selects action whose
value is maximum, and selects other action with probability
ε. The q(n) is determined by the following equation:

q(n) = W (Action,1)
out r(n) +W (Action,2)

out y(n) + s(n), (4)

where s(n) denotes the context vector generated by the ac-
tion planning process. The model updates its internal state
m(n) as following equations:

I(n) = Wrr(n− 1)+Wby(n− 1)+ αeWee(n− 1)+Waa(n),
(5)

m(n) =m(n − 1) +
∆t
τ

(−m(n − 1) + I(n)) , (6)

r(n) = tanh (m(n)), (7)

where I(n) denotes the sum of input for the reservoir neu-
rons. The ∆t denotes the unit time, and τ denotes the
time constant of reservoir neurons. The vector a(n) =
(a1, a2, a3)T ∈ R3 is the one-hot vector whose component
ai(n)|i=a(n) = 1 and other components ai(n)|i,a(n) = 0. The
connection matrices Wb, We and Wa are randomly initial-
ized with connecting strength αb, αe, αa, and connecting
rate βb, βe, βa, respectively. The spectral radius of Wr is set
to αr. The connecting rate of Wr is set to βr. The prediction
error e(n) is determined as following equation:

e(n) = d(n) − y(n). (8)

The readout connection W (S ensor)
out is trained by FORCE

algorithm [7] as following equations:

P(n + 1) = P(n) −
P(n)r(n)rT (n)PT (n)
1 + rT (n)P(n)r(n)

, (9)

W (S ensor)
out (n + 1) = W (S ensor)

out (n) + e(n)(P(n)r(n))T , (10)

where P denotes the inverse correlation matrix of firing rate
r(n), and it is initially set to the identity matrix. The read-
out connection W (Action,1)

out and W (Action,2)
out are trained by rein-

forcement learning which is formulated as following:

δ(n) = R(n + 1) + γmax
a

qa(n + 1) − qa(n)(n), (11)

W (Action,1)
out,a(n) (n + 1) = W (Action,1)

out,a(n) (n) + ηδ(n)P(n)r(n), (12)

W (Action,2)
out,a(n) (n + 1) = W (Action,2)

out,a(n) (n) + ηδ(n)y(n), (13)

where δ(n) denotes the temporal difference error of action
value. The W (Action,1)

out,a(n) denotes a(n)th row component of

W (Action,1)
out , and W (Action,2)

out,a(n) denotes a(n)th row component of

W (Action,2)
out . The γ denotes the discount rate of the action

value. The η is the learning rate. This formulation is based
on the previous research [3][8], but we use P(n)r(n) instead
of r(n).

The schematic of mental simulation is shown in Figure
2. The model learns on the real environment (bottom side
of Figure 2), and the model searches for optimal action se-
quence using the simulated environment on mental simula-
tion (upper side of Figure 2). The mental simulation pro-
cess is performed by setting αe to 0. The model does not
receive the prediction error feedback and reconstructs sen-
sory information using its internal dynamics while αe = 0
based on the equation (5).

The search for the optimal context is achieved by the
Nelder-Mead method, which finds the minimal value of an
objective function in multidimensional space. We set the
five parameters as the arguments of the objective function:
the initial time step of adding the context N ∈ N, the pe-
riod of adding context T ∈ N, and the adding value s ∈ R3.
The context is evaluated based on the Euclidian distance
between the target position of action planning and the de-
coded position of the predicted place cell representation.
This distance is used as the objective function of this op-
timization. We decode the position (x̂, ŷ) from place cell
representation as following equation [10]:

x̂ =
∑

i v̂(PC)
i xi∑

i v̂(PC)
i

, ŷ =
∑

i v̂(PC)
i yi∑

i v̂(PC)
i

, (14)

where v̂(PC)
i denotes the predicted place cell value. The con-

text sequence is optimized by applying these processes 10
times. Figure 3 shows the schematic of the action value
sequence with optimized context. We compare five op-
timized context sequences by the nearest distance in the
mental simulation, and the context sequence whose score
is the best is used.

In the experiments, the following parameters are used:
Nx = 500, τ = 8 (s), ∆t = 0.2 (s), αr = 0.9, αb = 0.1,
αe = 0.1, αa = 1.0, βr = βb = βe = βa = 0.1, η = 0.001,
γ = 0.95, σpc = 90 (mm), σhd = π/4 (rad). The model is
trained to predict sensory signal and avoid collision during

– 84 –

training. The reward corresponds to the collision; the nega-
tive reward −10 is given when the robot clashes. While the
robot moves, the negative reward −0.01 is given when the
robot turns, and the positive reward 0.1 is given when the
robot moves forward. The parameter ε is set to 0.1. In the
testing process, the model’s parameter is not configured.
The parameter ε is set to 0. The maximum time step is set
to 1000 steps in the training process and 150 in the testing
process.

Action

Sensory

information

Target position

Robots

Episodes on

real environment

Robots

Simulated episode on

mental simulation

obstacles

Target position

Collision

obstacles Collision

d

y

e

Prediction

Prediction
error

Reservoir

q

Action
Value

a

Figure 2: Schematic of mental simulation. The dashed
black arrows represent the interaction between the model
and the environment. The solid blue arrows represent
the trajectories of the robot on real episode. The dashed
blue lines represent trajectories of the robot on simulated
episode.

qa�

A
ct

io
n

 v
al

u
e

time step

original action value

action value added by planning

qa!

qa"

Figure 3: Schematic of action value modification. The
solid lines represent the original action value. The dashed
lines represent the action value added by planning process.

3. Results

Figure 4 shows the time step that the robot moves with
avoiding collision for each episode. The blue dots with
line represent the mean time step of 10 samples. The verti-
cal gray line represents the standard deviation of time step.
This result indicate that the robot can keep moving while
avoiding collision by learning.

Episode
10008006004002000

1000

800

600

400

200

0

1200

T
im

e
st

ep

Figure 4: Time steps while the robot avoid collision. The
blue line with dots represents mean time step. The gray
vertical bar represents standard deviation.

Figure 5 shows the environment and the robot’s trajec-
tories. The solid black lines represent obstacles and walls.
The blue lines represent the trajectory when the robot’s ini-
tial direction is upper. The red lines represent the trajec-
tory when the robot’s initial direction is right. The solid
blue and red lines represent the robot’s trajectories without
planning. The dashed lines represent the robot’s trajecto-
ries with planning. The square mark represents the initial
point of the robot. The star mark represents the target point
of planning. Figure 5 shows that the robot successfully
reaches the target point by planning (dashed lines in Fig-
ure 5). The robot does not reach the target point without
planning (solid lines in Figure 5).

4. Conclusion

We proposed the mental simulation framework that per-
forms the action planning on a mobile robot navigation task
with the reservoir-based reinforcement learning model.
The model performs action planning so that the robot can
reach a target point without specific training for this target.

The mental simulation in the present model has two
functions. The first function is to simulate the sequence of
actions and the following robot’s trajectories in the environ-
ment. The second function is to simulate sensory informa-
tion obtained from the environment; the robot can simulate
the placement of obstacles and the relationship between ob-
stacles and the robot’s position. The agent simulates how
the environment around the robot will change in the next
timestep from the current and previous state. The second

– 85 –

 0

 200

 400

 600

 800

 0 200 400 600 800

Y
-a

x
is

 (
m

m
)

X-axis (mm)

Figure 5: Trajectories of mobile robot. The blue lines rep-
resent the trajectory when the robot’s initial direction is set
to upper. The red lines represent the trajectory when the
robot’s initial direction is set to right. The solid lines repre-
sent the robot’s trajectories without planning. The dashed
lines represent the robot’s trajectories with planning.

function requires extensive computational resources; thus
reservoir computing contributes to reducing the computa-
tional cost of demanded mental simulation.

The proposed model can be applied to other reinforce-
ment learning tasks. The simulated and optimized ac-
tions contribute to efficient performance in the tasks with
the interaction between the environment and the agent.
We showed that reservoir computing can process complex
time-varying contextual information and is appropriate for
mental simulation. Also, various physical implementation
of the reservoir has been proposed. The present model
should be evaluated in those various implementations in the
future.

Acknowledgments

This paper is based on results obtained from a project,
JPNP16007, commissioned by the New Energy and In-
dustrial Technology Development Organization (NEDO),
and this work is also supported by JSPS KAKENHI
(21H05163, 20H04258, 20H00596, 21H03512), and JST
CREST(JPMJCR18K2), Moonshot R&D (JPMJMS2021).

References

[1] E. A. Antonelo, D. Stefan, S. Benjamin, “Learning
navigation attractors for mobile robots with reinforce-
ment learning and reservoir computing,” Proceedings

of the X Brazilian Congress on Computational Intel-
ligence (CBIC), Fortaleza, Brazil, November, 2011.

[2] J. B. Hamrick, “Analogues of mental simulation and
imagination in deep learning,” Current Opinion in Be-
havioral Sciences, vol.29, pp. 8-–16, 2019.

[3] M. Inada, Y. Tanaka, H. Tamukoh, K. Tateno,
T. Morie, Y. Katori, “Prediction of sensory infor-
mation and generation of motor commands for au-
tonomous mobile robots using reservoir computing,”
Proceedings 2019 International Symposium on Non-
linear Theory and its Applications (NOLTA2019),
p.333, 2019.

[4] H. Jaeger, “A tutorial on training recurrent neural net-
works, covering bppt, rtrl, ekf and the “echo state net-
work” approach,” German National Research Cen-
ter for Information Technology, ReVision, pp.1—46,
2002.

[5] Y. Katori, “Network Model for Dynamics of Percep-
tion with Reservoir Computing and Predictive Cod-
ing,” Advances in Cognitive Neurodynamics (VI),
pp.89—95, 2018.

[6] R. P. N. Rao, D. H. Ballard, “Predictive coding in
the visual cortex: a functional interpretation of some
extra-classical receptive-field effects,” Nature Neuro-
science, vol.2, no.1, pp.79-–87, 1999.

[7] D. Sussillo, L. F. Abbott, “Generating Coherent
Patterns of Activity from Chaotic Neural Networks,”
Neuron, vol.63, no.4, pp.544-–557, 2009.

[8] I. Szita, G. Viktor, L. András, “Reinforcement learn-
ing with echo state networks,” International Confer-
ence on Artificial Neural Networks, Springer, Berlin,
Heidelberg, pp.830–839, 2006.

[9] X. Xiao, B. Liu, G. Warnell, P. Stone, “Motion
Planning and Control for Mobile Robot Navigation
Using Machine Learning: a Survey,” Autonomous
Robots, pp.1–29, 2022.

[10] K. Zhang, I. Ginzburg, B. L. McNaughton, T. J.
Sejnowski, “Interpreting neuronal population activity
by reconstruction: unified framework with applica-
tion to hippocampal place cells,” Journal of neuro-
physiology, vol.79, no.2, pp.1017-–1044, 1998.

[11] F. Gao, L. Han, “Implementing the Nelder-Mead
simplex algorithm with adaptive parameters,” Com-
putational Optimization and Applications, vol.51,
pp.259–277, 2012.

– 86 –

