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Abstract—A two-valued piecewise-linear, constant
slope, 1D transformation is defined as a simplified model
for hysteresis. By using Goéra’s S-matrix and classical re-
sults on Rényi’s B-transformation x — Bx (mod 1) the den-
sity function of the induced absolutely continuous ergodic
measure is determined. Interesting simulation results re-
veal the chaos established.

1. Introduction and the main result

The recent discovery of the memristor by Strukov et
al. [8] calls the attention to investigating the qualitative
properties of two-valued interval maps. We report on on-
going work explaining chaos in the piecewise expanding
case. Our approach is based on observing that, given a
two-valued interval map x — X(x) (satisfying certain con-
ditions), a concatenated arclength parametrization leads to
a single-valued interval map s — S (s) for which standard
results on chaos in 1D directly apply. The general discus-
sion in Section 3 involves two increasing branches. The
definition of the S-hysteresis transformation, the simplest
possible example is left to Section 4. Decreasing branches
are considered only in two-valued Poincaré sections of the
2D Feng-Loparo ODE model example [3] for hysteresis in
Section 2.

In line with the monograph of Boyarski & Géra [2] and
the consecutive papers by Gora [4, 5], we focus our atten-
tion to absolutely continuous invariant measures for piece-
wise expanding 1D transformations, i.e., for interval maps
of the form 7: [0,1] — [0, 1] satisfying 7l 4,.,] € C'
for some finite partition Uflvzo[an,a,m] = [0,1] with 0 =
ay < a; < --- <ayny = 1land|t'(x)] = g > 1 whenever
x € lap,apt1],n =0,1,...,N. (In general, 7 is two-valued
on the set {a;,as,...,ay}.)

2. A two-valued, simple interval map
modelling hysteresis

The piecewise linear 2D pair of ordinary differential
equations

(x) = ( 7 w) (x " 1) whenever x < 1 D

v\~ o)\

(x) = ( 7 a)) (x - 1) whenever x > —1 2)

y —w o0 y
is a well-known model for hysteresis [3, 6]. Here o and w
are parameters satisfying, for simplicity,c > O and w > O.
Solutions to system (1)—(2) can be started at points where
the right-hand side is single-valued, i.e., at initial values
(x(0), ¥(0)) = (x0,y0) € R? satisfying xo < —1 or xo > 1.
Any time a trajectory governed by equation (1) reaches the
right-hand switching line x = 1, it remains in the half-plane
{(x,y) € R2|x > -1}, and it is governed by equation (2)
for a while. Similarly, any time a trajectory governed by
equation (2) reaches the left-hand switching line x = —1, it
remains in the half-plane {(x,y) € R?|x < 1}, and it is gov-
erned by equation (1) for a while (until it hits the switching
line x = 1 etc.). Without specifying the respective domains,

Ea. (9

Eq. (1)

Figure 1: A typical trajectory of the system portrayed ac-
cording to equations (1) and (2)

the solutions to system (1)—(2) can be written as

x(t, X0, Yo) e’ sin(wi)\ (xo F 1 +1
()’(l‘, an.VO)) e’ COS(“”))( Yo ) " ( 0 )
where x(0, xo,yo) = xo € R and y(0, xp, y9) = yo € R.

This leads easily to an explicit representation of the
Poincaré mapping x — X(x) defined as the first return map
associated with the horizontal axis. (Though our mapping
x — X(x) is two-valued on the interval (-1, 1), we feel it is
more natural than the single-valued return maps associated
with the switching lines and the transition or half-return

map between the two switching lines (termed as Poincaré
mapping by Feng and Loparo [3]).)

[ €7 cos(wr)
“ =" sin(wr)

- 191 -



Figure 2: Construction of the Poincaré mapping

For brevity, set m = es™ and, for x > 1 + 2, let y*(x) =

— Ve TW(x — 1)? — 4 where T(x) = T(x,0,0) € (&, %
denotes the (uniquely defined) root of equation

¢“T™ cos(wT (x)) = 2 ) 3)
x—1

If o € (1,1 + %], then the trajectory starting from

(x9, 0) reaches the horizontal axis at
o
X(xp) = x(—ﬂ, xo,O) =-mxo—1)+1€[-1,+00)
w

for the first time. If xo > 1 + 2, then the trajectory start-
ing from (xp,0) hits the switching line x = —1 at the
point (x(T'(xo), X0, 0), (T (x0), x0,0)) = (=1,y"(x0)) first
and then, after time 7 (xg) + %ﬂ', it reaches the horizontal
axis at

X(x0) = = Vmy*(x0)=1 = 2 Vmtan (0T (x0))~1 € (=0, ~1).

Finally, we arrive at

x<1
-1<x

] oatx) if
X(x)_{A(x) if

where

A) = —-m(x—-1)+1 if -l<x<l+2
VI 2vmtan Ty -1 if 1+ 2<x

and, by symmetry, a(x) = —A(—x) for all x < 1. Note that
function A = A(,0,w) = A, Z,1) @ (=1,+0) — Ris

continuous and strictly decreasing.

Proposition 1 For o > 0, the two-valued mapping x —
X(x) is piecewise expanding.

Proof. By using the derivative and then the square of equa-
tion (3), we obtain that

T’ (x)

A =2Vm- cos2(wT(x))

X(%)

a(x)
\ 1+2
2 |

Figure 3: The Poincaré mapping

40T w

" oS @T () - (x — 1) o cos(@T (%)) — wsin(@T (x))

w

- \/7; . eo’T(x) .

o cos(wT (x)) — wsin(wT (x))
whenever x > | + % Is is readily checked that function

ol w

TrH—e ;
o cos(wT) — w sin(wT)

is negative and strictly decreasing on the interval (57, Z].
Thus, A’(x) < yme”% ;% = —m < —1 whenever x >
1+ % The rest is clear. (I

As a simple consequence of the Proposition, equation
A(x) = —x has a unique solution m* = m*(Z) > 1+% ifm >
1. The periodic sequence —m*, m*, —m*, m*, . . . corresponds
to a periodic orbit of system (1)—(2). If also m* > 2m + 1,
then the restriction of the two-valued mapping x — X(x) to
the interval [-m*, m*] is onto. (Note that inequality m* >
2m + 1 is satisfied whenever m = 1 + g, 0 < & sufficiently
small.)

Iterations of the Poincaré mapping x +— X(x) can
be started at points where X is single-valued. Clearly
(x0,x1) € Graph(A) whenever xo > 1, and (xgp,x;) €
Graph(a) whenever xp < —1. Any time (x;_,Xx) €
Graph(A), then xz; = A(xy) if xx > —1 and a(x) if
xx < —1. Similarly, any time (x;—;,xx) € Graph(a), then
Xir1 = alxg) if xx < 1 and A(xy) if x, > 1. Thus, it-
erations of the Poincaré mapping x +— X(x) have to be
understood as iterations on Graph(a) U Graph(A) which,
in turn—via the concatenated arclength parametrization of
Graph(a) U Graph(A) below—can be represented as itera-
tions of an associated, standard interval map.
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3. The associated interval map

Now we pass to two-valued mappings of the form

X = { é(()%

if x € [a,b]
if x € [c,d]

where constants a, b, ¢, d satisfy 0 = a < ¢ < b < d, map-
pings ¢ : [a,b] — [a,d] and @ : [c,d] — [a,d] are twice
continuously differentiable, strictly increasing, and satisfy
inequalities ¢(a) < b < ¢(b) and D(c) < ¢ < O(d).

>74(c) ORI

v
'

Figure 4: Concatenated arclength parametrization

Concatenated arclength parametrization is introduced
via defining

{(x) = f ' 1+ @@)?du for x € [a,b],
Lx) = C+ fx VI+ (D' (w)*> du for x € [c,d]

where C = £(b). Observe that 0 = £(a), C = L(c) and let
A=0,B=LUg (b)), D=LD (), E = L(d)
By the construction, 0 = A < B < C < D < E. The interval

map S : [A, E] — R associated with x — X(x) is defined
by letting

Le(t7(s))) if s€[A,B]

S(s) = Lp(t7'(s))) if s€[B,C]

T ) «OUL(s) if se[C,D]
L(®(L7(s))) if se[D,E].

Clearly S(s) € [A, E] for all 5 € [A, E].
For x € [a, c) U (b, d], the sequence of iterates (X* ()} ren
is defined and satisfies

X*(x) = P(SK(P7'(x))) foreach ke N 4)

where mapping P : [A, E] — [a, d] is defined by letting

[ ) if s€e[AC]
Ps) ‘{ L'(s) if se[CE].

(As it is indicated by Fig. 4, P can be visualized as a verti-
cal projection because the parametrization we use identifies
interval [A, E] with Graph(p) U Graph(®). Note that P (%)
is single-valued for x € [a,c) U (b,d].)

Lemma 1 Suppose that ¢'(x) > q > 1 for each x € [a, b]
and ®’(x) > q > 1 for each x € [c,d]. Then S'(s) > g > 1
for each s € [A,E].

Proof. Consider e.g. the case s € [C,D]. Then s = L(x)
for some x € (¢, ®!(¢)) and S (s) = £(D(x)). Thus
@'(x)

’ _ p .(D/(X) _ ’ 2,
§'(s) = '(P(x)) o Y1+ @ (@) —1 TG

and the desired inequality follows immediately. In fact, the
first product term is at least /1 + ¢ and function p +

p/ /1 + p? is increasing on [¢, +co). O

Theorem 1 Assume that the conditions of the previous
Lemma are satisfied. Then there exists an absolutely con-
tinuous probability measure v on interval [a,d] with the
property that

lim l#{OSkSn—lIX"(x)eM}:v(M)

n—+oco 1

for v-almost all x € [a, c) U (b, d] and every Borel set M C
[a,d].

Proof. In view of the famous Lasota—Yorke Theorem (see
e.g. in [2]), the associated interval map S : [A, E] — [A, E]
admits an ergodic, absolutely continuous probability mea-
sure y. Since P and both branches of P~! are Lipschitz,
formula

V(M) = (P~ (M)
(whenever M is a Borel subset of interval [a, d])

defines an absolutely continuous probability measure on
la,d].
Birkhoft’s Ergodic Theorem gives that

1
lim -~ #{0<k<n—115%s) e P} = u(P~ (M)
(5)

for p-almost all s € [A, B) U (D, E] (actually, for u-almost
all s € [A, E]) and every Borel set M C [a,d]. Since x =
P~!(s) is uniquely defined, the left-hand side of (5) equals
to

.1 ke p-1

lim ~ #{0 <k <n—1|PS“(P~'(x)) € M)

n—oo n

1
= lim - #{0<k<n-1]X"x) € M|

n—oo n

whereas the right-hand side of (5) equals to v(M). O

If m = 1+ e and 0 < ¢ is sufficiently small, then Theo-
rem 1 holds true for (a suitable restriction of) the Poincaré
mapping discussed in the previous section.
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Remark 1 Given a pair of Borel subsets M, N of the set
[a,c) U (b,d], it is not hard to prove that for each k € N

PLX ) n PTY W) = STHPTH (M) n PPV,
This implies that mixing properties of measure | are, in a
technical sense, inherited by measure v.

4. Further results

For 1 < B < 2, the B-hysteresis transformation Xp :
[0, 1] — [0, 1] is defined as the two-valued mapping

| Bx if 0<px<1
Xﬁ(x)_{ﬁ(x—1)+1 if B-1<px<p

The associated interval map (normed to be defined on the
unit interval) Sg : [0, 1] — [0, 1] is given by letting

Bs if 0<ps<1/2
G o) B 1D +1 i 1/2<Bs<p)2
B =1 Bis—1/2) if B/2<ps<p-1)2

Bls—1/2)+1 if B—1/2<ps<p.

The interval map Sg, 1 < B < 2, belongs to the class of
mappings investigated in a recent paper by Géra [5]. His
matrix S is a 4 X 4 matrix in our case and, as it is read-
ily checked by a direct computation, é is not an eigenvalue
of S. Hence the absolutely continuous invariant probabil-
ity measure ug associated with Sz is unique and ergodic.
The (non-normalized) density function of ugz can be given

3
B=3 1
2

| /

™I
Bl

Ll ST

Bl

a c b d A=0 B=s,C D

Figure 5: The B-hysteresis transformation and its associ-
ated interval map normed to be defined on the unit interval

explicitly as

1 1 2

WS = Dt R REoD

00

1
Z (XIO,lfo;,,.(So)l(S) +X[S,§,.<so),1|(s)) B

k=1

+

Here D is an appropriate constant (computed from Géra’s
matrix S: his D;’s are all equal in our case), yy(s) = 1 if
s € M and yp(s) = 0if s ¢ M (the characteristic function
of M), S g, is the right-continuous—in Gdra’s terminology,

the lazy”—single-valued selection of Sg, and 5o = # (the
first point of discontinuity of S z). For details, see Theorem
8 of Géra [5] as well as our forthcoming paper.

Remark 2 For each interval J C [0, 1] and parameter
1 < B < 2, it is easy to check that SZ(J) = [0, 1] whenever
k > k(J,B) with some integer k(J,5). Hence ([2], p.167) Sg
is exact and Bernoulli. The simplest choice of B for which

S is Markov is 8 = 1+2‘B, a golden ratio number. This cor-
responds to the special case p(b) = ¢, O(c) = b in Section

3 and gives rise to beautiful subshift representations.

Details and complete proofs will be published elsewhere.
For combinatorial properties of chaos in piecewise linear
maps with hysteresis, we refer to Berkolaiko [1] and to the
last Remark of the present note. For 1D chaos in electrical
circuits, see the survey paper by Sharkovsky & Chua [7].
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