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Abstract—We consider discretized Markov trans-
formations and give an algorithm, called the bounded
monotone truth-table algorithm, for generating all
full-length sequences which are based on the dis-
cretized transformations. The algorithm is efficient in
the sense that it guarantees to generate all full-length
sequences without computing their total number.

1. Introduction

Full-length sequences or maximal-period sequences
have found major applications in a wide variety of sys-
tems such as cryptography and digital communication
systems. To generate full-length sequences, a LFSR
(linear feedback shift register) is commonly used. On
the other hand, in view of randomness in chaotic dy-
namics of one-dimensional ergodic transformations, se-
quences based on discretized Bernoulli transformations
were proposed in [1] and [2]. The latter sequences have
a great advantage in terms of their family size. For
instance, for binary sequences of length 2", while the
total number of the former sequences is much less than
2" /n, the total number of the celebrated de Bruijn se-
quences is known to be 22" ™.

In previous research [3], we generally defined dis-
cretized Markov transformations and found an algo-
rithm to give the total number of full-length sequences
based on discretized Markov transformations. The
discretized Markov transformations, which can be re-
garded as examples of ultradiscrete dynamical systems
[4], are permutations of subintervals in Markov par-
titions determined from the transformations. From
this viewpoint, de Bruijn sequences are merely spe-
cial examples of full-length sequences in the discretized
Markov transformations. In fact, they are full-length
sequences based on a subclass of the discretized dyadic
transformations.

Given a Markov transformation, we obtain count-
ably many discretized Markov transformations as de-
fined in [3]. If we fix a discretized Markov trans-
formation, we can compute the total number of full-
length sequences based on the discretized transforma-
tions from the algorithm found in [3].

The instant we know its total number, it is natural
to consider a problem to give an algorithm for generat-
ing all the full-length sequences. This question is not
only interesting from the mathematical viewpoint but
also important in a practical sense. As stated above,
full-length sequences principally admit a broad vari-
ety of applications. However, it is quite a difficult but
challenging problem. FEven for de Bruijn sequences,
only a few algorithms are known for generating all de
Bruijn sequences, while a number of results have con-
tributed to generations of a single sequence or a small
fraction of the sequences [5]-[6].

Under the assumption that full-length sequences
were already given, by transpositions of the sequences,
an algorithm was proposed in [7] for generating rela-
tively many sequences based on the discretized r-adic
transformations which included de Bruijn sequences
for r = 2. It is an interesting approach which generates
comparably many, but not all, full-length sequences.

In this report we tackle the problem to give an al-
gorithm for generating all the full-length sequences.
To this end, we consider general discretized Markov
transformations and give a novel algorithm, called the
bounded monotone truth-table algorithm, for generat-
ing all full-length sequences which are based on the dis-
cretized transformations. The algorithm is efficient in
the sense that it guarantees to generate all full-length
sequences without computing their total number. The
algorithm proposed here is of course applicable to gen-
eration of all de Bruijn sequences.

2. Previous Results On Generating De Bruijn
Sequences

To avoid redundancies, we freely use the technical
terms defined in [3] throughout this report. If the
reader encounters a jargon, please consult [3].

In [3] we defined the discretized Markov transforma-
tions and found an algorithm to give the total number
of full-length sequences which are based on the dis-
cretized Markov transformations as follows.

For an irreducible aperiodic Markov transformation
T, given a Markov partition P with respect to T', cor-
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responding each subinterval I € P to one arc a(I), we
obtain the set A of arcs. For each ordered pair (I, .J)
of elements of P, one vertex v(1, J) adjacent from a(I)
and to a(J) is allowed exactly when J C T|;(I). Thus
we obtain the directed graph G = (V,.A) represent-
ing the Markov transformation. Generally, this is not
Eulerian.

Let H = (W, B) be the Eulerian subgraph spanning
G with maximal number of arcs.

Under the above-mentioned one-to-one correspon-
dence between P and A, we obtain the partition Q
which corresponds to B. Then the discretized Markov
transformation 7 is defined by a permutation 7" : Q —
Q with T(I) € T|;(I) for all I € Q. Eventually,
the number of full-length sequences in the discretized
Markov transformation is given by the cofactor of C;
in the matrix of admittance C' of H.

In view of this definition, the celebrated de Bruijn
sequences are merely special examples of full-length se-
quences from the discretized Markov transformations
as stated in the Introduction.

Now we review the algorithms for generating all de
Bruijn sequences.

For each positive integer n, there are exactly
22"7'=" de Bruijn sequences of length 2" [8]-[9]. The
most important part of de Bruijn’s proof for this fact
lies in the recognition of a relation between the graphs
Gy and Gpo1:

Gn+1 = G;, (1)

where G,, = (Vp, Ay) (n > 1) is the de Bruijn graph
with V, = {0,1}""! and A, = {0,1}". An arc
aias---a, € A goes from ajas - a1 to asas---ay,.
G7, is the arc digraph of G,,.

Using the relation (1), an algorithm for generating
all de Bruijn sequences was stated in [6]. To gener-
ate all de Bruijn sequences of length 2™ it always re-
quires 22" it initial memory, which is rather costly
in terms of the amount of storage required.

Unfortunately, however, this algorithm cannot ap-
ply to generating all full-length sequences from gen-
eral discretized Markov transformations since relations
like (1) do not hold in general. In fact, for discretized
golden mean transformations, (1) is violated as shown
in [3].

To state the known algorithm not using (1) for gen-
erating all de Bruijn sequences, following [5], we intro-
duce

Definition 1 A preference function p is a k(>
2)-dimensional wvector-valued function of n — 1
(n > 2) wvariables such that, for each choice of

ai,as, - ,an_1 from the k-alphabet {0,1,--- 'k —
1}, (paar, -+ s ap—1), -+ ,pe(ar, -+ ,an—1)) is a rear-
rangement of 0,---  k — 1.

In particular, for the binary alphabet, if

pi(ai, -+ ,an—1) = 1, p is called a prefer-one
function [6].

Using the prefer-one function in conjunction with
backtracking, an algorithm for generating all de Bruijn
sequences was introduced in [6]. Accordingly, to gener-
ate a single de Bruijn sequence of length 27, it always
requires a linear order of n2™-bit memory and requires
operations of order O(2") at least, where O denotes
Landau’s symbol. Thus it totally needs operations of
order O(22" ") for generating all de Bruijn sequences.
Actually, it was pointed out in [6] that the algorithms
using the prefer-one function were expensive in terms
of the amount of storage required.

Again this algorithm cannot apply to generat-
ing all full-length sequences from general discretized
Markov transformations since the preference func-
tions are not always well defined. Actually, for
discretized golden mean transformations, we al-
ways have (pi(ar,---,an—2,1),p2(a1, -+ ,an_2,1)) =
(0,0), which is not a rearrangement of 0, 1.

So far, to the best of the author’s knowledge, only a
few algorithms for generating all de Bruijn sequences
are known, and they strictly depend on the properties
of de Bruijn sequences. Therefore we cannot directly
apply these algorithms to generating all full-length se-
quences from general discretized Markov transforma-
tions. Thus the algorithm proposed in this research is
novel as well as not trivial.

3. The Bounded Monotone Truth-Table Algo-

rithm

To simplify discussions, we restrict the k(> 2)-
alphabet to the binary alphabet {0,1}. This simpli-
fication does not essentially change any mathematical
treatments for the case k > 2 except k! cases to be
counted.

To generate all full-length sequences based on a
given discretized Markov transformation, in view of re-
sults in [3] which are briefly reviewed in the beginning
of Section 2, we can begin with the Eulerian subgraph
H = (W, B) spanning G with maximal number of arcs.

Since H is Eulerian, it is connected and every vertex
has an even degree. Thus, with the binary alphabet,
the degree of each vertex is 2 or 4.

To proceed to the main steps, we contract H into a

regular graph in advance as follows.
Step 0a) If a vertex v € W has the degree of 2, it
has a unique pair of vertices u,w € W such that v is
adjacent to v and w is adjacent from v. Since we are
interested in only full-length sequences, we can regard
the pair of arcs (uv, vw) as a single arc. In other words,
we can shorten the vertex v from H without changing
any Eulerian paths in H.

If all the vertices have the degree of 4, go to Ob).
Otherwise, go to 0a).
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We refer the resulting graph H' = (W', B’) to the
contracted regular graph from H.

Let W' = {w, w5, -+ ,wj, }. For aset A, we use
#A to denote the cardinality of A. Each vertex can be

represented by a binary word as w} = agi)aéi) e a‘(:z,“ €

{0,1}%il, 1 < i < $W'. For a word w, we use |w| to
denote the length of w.

Now in H’, two arcs Ow} and 1w} terminate at w),
while w/0 and w}l start at w]. If a path admits
0w}0, which is equivalent to that it admits 1w}l (i.e.
the path admits Ow}0- - - 1w}1) or that other path ad-
mits lw;l (and the path does not admit lw}l), we
set t; = 0. On the other hand, if a path admits
Ow}1, which is equivalent to that it admits 1w.0 (i.e.
the path admits Ow;1 - --1w;0) or that other path ad-
mits 1w]0 (and the path does not admit 1w]0), we
set t; = 1. Thus we obtain a §'-dimensional vector
t = (t1,ta, -, tywr) € {0, 1}V, We call it the truth
table of H'.

Example 1 The truth table of de Bruijn graph
G, = ({0,131 {0,1}") (n > 1) is given by
(ala az,--- 7an71) € {0, 1}n71'

The truth table ¢ of H' defines a permutation oy :

B — B’ by

o, — ( Ow] Owjyy 1w Lwiyy, )
wgtl w;tuw/ w;tl w;tuwl ’

which represents a discretized Markov transformation.

For a € {0,1}, we use @ to denote the binary comple-

ment of a,i.e. 0 =1and 1= 0.

Next, we introduce a metric d in the set of
discretized Markov transformations by d(o¢,0p) =
dy (t,t') for t,t' € {0,1}"Y') where dy is the Ham-
ming distance of ¢ and ¢, i.e. the number of compo-
nents where ¢ and ¢’ differ.

The following lemma navigates the next steps
through the proposed algorithm:

Lemma 1 Let oy be a discretized Markov transforma-
tion generating a full-length sequence, which is equiva-
lent to oy itself being a full cycle. Then any discretized
Markov transformation oy with d(oy,0p) = 1 cannot
be a full cycle.

Before taking the main steps, we need another pre-
requisite:
Step Ob) For i =1,2,--- ,fW', if a vertex has a form
of w} = Oag) . ~-a‘(3<‘710, set t; =1, or if a vertex has

a form of w; = lagl) e a|(22|71
liminarily prevents cycles of single arcs. Since the orig-
inal transformation is irreducible and aperiodic, either
takes place at least once, but both occur at most once.
Hereafter we fix such ¢;. After we exclude all such
fixed t; from ¢ and renumber the coordinates of the
rest components in ¢, we obtain a W — 1- or W' — 2-

1, set t; = 0, which pre-

dimensional vector and denote it by £ = ({1, -- ,tw).
We refer to £ as the contracted truth table. By defini-
tion, we obtain a one-to-one correspondence 7y : t — t
and Y71t t.

The following subroutine plays an important role in
the proposed algorithm.
Step B1) Let m (1 < m < 24W') be the least period
with

o (0w)) = Ow).

For each i (1 < i < W), if there exists n (1 <
n < m < 2fW') such that o}(0w}) = Owj, then
set r; = 1. Otherwise set r; = 0. Thus we obtain
r=(r, - ,rpnr). fry=1foralli(1<i< W),
then we obtain a full cycle o; and return. Otherwise

go to B2).
Step B2) Set 7 = ~(r) and 7 = (1, - ,Tw).
Let Ry = max{i 7 = 0,1 < i < W} and

Ry =max{i : 7, =1, 1 < i < W}. If there exists
n (1 <n<m<28W) such thatif(Owi) = 1wgwl,

then set t = ’}/_1(51, cee 7530717£R07£Ro+17"' ,Ew)
and go to BIl). Otherwise set ¢t =
’771(51,"' 7£R1717£R17£R1+17“' 7£W) and g0 to
B1).

In what follows, we regard ¢ as the positional no-
tation using base 2 for a nonnegative integer. The
following lemma is the essential ingredient in the pro-
posed algorithm:

Lemma 2 Let 7 = {i e {0,1}W oy =
Oy-1(7) 18 a full cycle}. If we input t with t =
(0,---,0) into B1), then we obtain the full cycle o,
——

w _ ~
whose contracted truth table t is the lower bound of T .
On the other hand, if we input t with t = (1,---,1)

——
w
into B1), then we obtain the full cycle oy iuhose con-
tracted truth table t is the upper bound of T .

As stated in Section 2, we know for each positive
integer n, there exists 22" e Bruijn sequences
of length 2”. Thus, for generating all de Bruijn se-
quences, by checking the number of distinct generated
sequences, one is immediately given a condition when
the algorithm stops. On the contrary, for generating
all full-length sequences which are based on the dis-
cretized Markov transformations, it is not so simple.
If we want to know the total number of the full-length
sequences, we need to compute the cofactor of C1; in
the matrix of admittance C' of H'.

For a N x N matrix, it is known that the asymptotic
complexity is O((N — 1)**™) to compute the cofactor
[10]. Note that N = #B’ has an exponential order with
base 2 for discretized Markov transformations.

Lemma 2 is of great use since it guarantees that the
proposed algorithm stops without calculating the total
number of the full-length sequences.
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Now we are in the right position to introduce the
main steps.
Step 1)(Computation of the upper bound) Set ¢ with

t = (1,---,1) and go to Bl). After returning from
——

w
B1), output o; and set v = (vq,--- ,vw) = t. Go to
2).
Step 2) Set t with £ = (0,---,0) and go to BIl).
——
W

After returning from B1), output o; and set i =
(fgl), e ,f%‘l,)) =1{. Set i = 1. and go to 3).
Step 3) If f%;,) = 0, then set { = @ + 11. If f%,) =
1, then set ¢ = ¢ + 1. The addition is performed
in the binary number system regarding ¢ and ¢ as
the positional notations using base 2 for nonnegative
integers. Go to Bl). After returning from B1) go to
4).
Step 4) If £ < v, then output oy. Set {0+ =
(Eﬁ””,-- ,f%,ﬂ)) =+t Seti =i+ 1 and go to 3).
If £ = v, then stop.

Because of the following remark, we refer to the pro-
posed algorithm as the bounded monotone truth-table
algorithm.

Remark 1 The resulting sequence of contracted truth
tables is bounded and monotone increasing:

E(l)<£(2)<"'§U.

4. Application To Generating All De Bruijn
Sequences

To see that the proposed algorithm works well, we
apply it to generations of all 22" '~" de Bruijn se-
quences of length 2™.

For the case n = 4, we have all 16 de Bruijn
sequences of length 2%  To avoid cycles of sin-
gle arc preliminarily, we define its truth table by
(1,t9,t3, -+ ,t7,0) € {0,1}8. Thus we write { =
(1, ,tg). We regard a binary word #; - - -t as the
binary vector (f1,--- ,%s) in the following.

Using the subroutine B1)-B2) with the vector
1---1, we obtain the upper bound v = 111110. Sim-
——

6
ilarly, with the initial vector 0---0, we obtain the
~——

6
lower bound £(!) = 000111. Then the proposed algo-

rithm generates a bounded and monotone increasing
sequence of contracted truth tables as follows:

1 = 000111 < 001110 < 010011 < 010110
< 010101 < 011010 < 011100 < 011111
< 100011 < 101010 < 110001 < 110010
< 110111 < 111000 < 111011 < 111110 = v,

which demonstrates all distinct 16 de Bruijn se-
quences.

5. Summary

We considered discretized Markov transformations
and gave a novel algorithm, called the bounded mono-
tone truth-table algorithm, for generating all full-
length sequences which were based on the discretized
transformations. The algorithm was efficient in the
sense that it guaranteed the generation of all full-
length sequences without computing their total num-
ber. It was not expensive as well in computing time
and memory in the sense that it did not use the prefer-
one function. We have also shown that the algorithm
proposed here was applicable to generation of all de
Bruijn sequences.
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