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Abstract—The notion of cellular stratified spaces was
introduced in [ ] with the aim of constructing a cellu-
lar model of the configuration space of a sphere. In particu-
lar, it was shown that the classifying space (order complex)
of the face poset of a totally normal regular cellular strati-
fied space X can be embedded in X as a deformation retract.

Here we elaborate on this idea and prove an extension of
one of the main results in [ ]. We construct an acyclic
category, called the face category, F(X) from a totally nor-
mal cellular stratified space X. We show the classifying
space of F(X) can be embedded into X as a strong deforma-
tion retract. As an application, we construct a combinato-
rial model for the configuration space Conf(I') of k distinct
points for any graph (1-dimensional finite cell complex) I'.

1. Introduction

Consider the following problem:

Problem 1.1 Given a space X, construct a combinatorial
model for the configuration space Confy(X) of k distinct
points in X. In other words, find a cell complex or a simpli-
cial complex Ci(X) that can be embedded in Confi(X) as a
Yr-equivariant deformation retract.

Several solutions are known in special cases.

Example 1.2 For a CW-complex X of dimension 1, i.e.
a graph, Abrams constructed a subspace C,‘?bmms(X) con-
tained in Conf(X) in his thesis [ ] and proved that

CPms(X) ~ Confy(X)
as long as the following two conditions are satisfied:

1. each path connecting vertices X of valency more than
2 has length at least k + 1, and

2. each homotopically essential path connecting a vertex
to itself has length at least k + 1.

Here a path means a sequence of composable 1-cells. O
Example 1.3 Consider the case X = R". Define

H,"j= {(xl,...,xk)ERki xizxj},

then it defines an affine subspace H; j;@R" in RFQR" = (RM)*
and we have

Confy(R") = X* —

When n = 2, the construction due to Salvetti [ ]
gives us a regular cell complex Sal(Ay_|) embedded in
Conf(R?) as a Xy-equivariant deformation retract.

More generally, the construction sketched at the end of
[ ] by Bjorner and Ziegler and elaborated in [ ]
by De Concini and Salvetti gives us a regular cell complex
Sal"(A_) embedded in Confy(R") as a Li-equivariant
deformation retract.

This construction is a special case of the construction of
a regular cell complex whose homotopy type represents the
complement of the subspace arrangement associated with
a real hyperplane arrangement. O

There are pros and cons in these two constructions. The
conditions for Abrams’ model require us to subdivide a
given 1-dimensional CW-complex finely. For example, his
construction fails to give the right homotopy type of the
configuration space Conf(S ') of two points in S when it
is applied to the minimal cell decomposition: S = e’ Ue!.

Another problem is that his theorem is restricted to 1-
dimensional CW-complexes, although the construction it-
self works for any cell complex'.

On the other hand, the crucial deficiency of the second
construction is that it works only for X = R”. An im-
portant point suggested by the second construction is that
we should work with more general stratifications than cell
complexes. The complex Sal™(A;_,) is constructed from
the combinatorial structure of the “cell decomposition” of
R"®R defined by the hyperplanes in the arrangement Aj_;
together with the standard framing in R¥. “Cells” in this de-
composition are unbounded regions in R” ® R* and the de-
composition is not a cell decomposition in the usual sense.

!t seems the study of higher dimensional cases has just started [ 1.
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One of the motivations of this paper is to find a com-
mon framework for working with configuration spaces and
complements of arrangements.

2. Cellular Stratified Spaces
Let us first define stratifications and cells.

Definition 2.1 Let X be a topological space. A stratifica-
tion on X is a a collection C of subsets, called strata, satis-
fying the following properties:

1. X = UEEC e.
2. Fore,e €C,ene =0ife+¢.
3. Each stratum e is locally closed, i.e. it is open in e.

Definition 2.2 Let X be a topological space. For a non-
negative integer n, an n-cell structure on a subspace e C X
is a pair (D, @) of a subspace D of the n-disk D" and a
continuous map

o:D—X

satisfying the following conditions:
1. Int(D") c D.
2. ¢(D) = e and the map ¢ : D — e is a quotient map.

3. The restriction @l : Int(D") — e is a homeomor-
phism.

4. The pair (D, ¢) is maximal in the poset of pairs satis-
fying the above conditions for e under inclusions.

For simplicity, we refer to an n-cell structure (D, ¢) on e
by e when there is no risk of confusion.

The map ¢ is called the characteristic map of e and D is
called the domain of e. The dimension n of the domain D
is called the dimension of e.

Definition 2.3 Let X be a topological space. A cellu-
lar stratification on X is a pair (C,®) of a stratification
C = {ealiea on X and a collection of cell structures ® =
{01 1 Dy — e3)ren satisfying the condition that, for each
n-cell e,, the boundary de, = e, — e, is covered by cells of
dimension less than or equal ton — 1.

A cellular stratified space is a triple (X,C,®) where
(C, @) is a cellular stratification on X. As usual, we abbre-
viate it by (X, C) or X, if there is no danger of confusion.

In order to be practical, we need to impose certain
niceness conditions on cellular stratified spaces. CW-
complexes are defined to be cell complexes satisfying the
closure finiteness and having the weak topology. Analo-
gously we usually impose the corresponding two condi-
tions on cellular stratified spaces.

Definition 2.4 A CW cellular stratified space is a cellular
stratified space X satisfying the following conditions:

1. (closure finite) for each n-cell e, its boundary de is
covered by a finite number of cells, and

2. (weak topology) the topology on X is given by the
weak topology determined by the covering given by
the closures of all cells.

Definition 2.5 Let X be a cellular stratified space.
o We say X is regular if all cells in X are regular.

o We say X is called normal if, for each n-cell e,, de,
is a union of cells of dimension less than or equal to
n—1.

The following definition was introduced in [ ]in
order to describe a condition under which the order com-
plex of the face poset of a regular cellular stratified space
is homotopy equivalent to the original space.

Definition 2.6 Letr (X,C) be a cellular stratified space. X
is called totally normal if, for each n-cell e,

e there exist a structure of regular cell complex on S"~!
containing dD, = D,—Int(D") as a stratified subspace
of §"71, and

e for each cell e in OD,, there exists a cell e, in X such
that e, and e share the same domain and the charac-
teristic map of e, factors through D, via the charac-
teristic map of e:

oD, D, —2 - x

e C
| "
D

D,.

Definition 2.7 For a cellular stratification C on a space
X, define a topological category F(X,C) as follows. Ob-
Jjects are cells F(X,C)y = {e| eisacell inC}. F(X,Q)y is
equipped with the discrete topology.

A morphism from a cell ¢ : D — e to another cell ¢’ :
D’ = ¢ is a lift of the characteristic map ¢ of e, i.e. a map
b : D — D’ making the following diagram commutative

D'L?(ﬁx

1

D — e.

Note that the existence of a morphism b : e — €’ implies
e C ¢'. The set of morphisms F(X,C)(e,e’) from e to e’ is
topologized by the compact open topology as a subspace of
Map(D, D’). The composition is given by the composition
of maps.

This topological category F(X, C) is called the face cat-
egory of C. It is denoted by F(X) or F(C), when C or X is
obvious from the context.
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It is straightforward to verify the following.

Lemma 2.8 F(X,C) is an acyclic category. When (X,C)
is totally normal, each F(X,C)(e, ¢’) has the discrete topol-
ogy. Furthermore when (X, C) is regular, F(X, C) is a poset.

In general, any acyclic category C has an associated
poset P(C) together with a functor 7 : C — P(C). Itis
called the underlying poset of C.

Definition 2.9 For a cellular stratified space (X,C), the
underlying poset of the face category F(X,C) is denoted
by P(X,C) and is called the face poset of (X, C).

Recall that the order complex of the face poset of a regu-
lar cell complex X is the barycentric subdivision of X. The
analogue of the order complex construction for topological
categories is the classifying space construction.

Definition 2.10 For a topological category C, let Cy and
C| be the spaces of objects and morphisms. The source and
the target maps are denote by s,t : C; — Cy, respectively.
Define

Nu(C) = {(u1,...,u,) € C7 | s(u;) = t(uj1), 1 <i<n—1}

An element of N,(C) is called an n-chain of C. The collec-
tion N(C) = {N,(C)},>0 together with the face and degen-
eracy operators defined by the compositions and identity
morphisms forms a simplicial space. The geometric real-
ization of N(C) is denoted by BC and is called the classify-
ing space of C.

For each topological space X, there is a standard way to
associate a simplicial set. Here we modify the definition
and make it into a simplicial space.

Definition 2.11 For a topological space X, define
S »(X) = Map(A”, X)

and topologize it by the compact-open topology. The struc-
ture of cosimplicial space on {A"},>0 makes {S ,(X)}n>0 into
a simplicial space. The resulting simplicial space is de-
noted by S (X) and is called the singular simplicial space of
X.

The case of regular cell complex suggest the following
notation.

Definition 2.12 Let (X,C) be a totally normal cellular
stratified space. Define its barycentric subdivision Sd(X, C)
to be the classifying space of the face category

Sd(X,C) = BF(X,C).

Proposition 2.13 Let C be a CW totally normal cellular
stratification on X. Then there exists a map of simplicial
spaces

i:N(F(C) — SX)

such that the composition

7:8d(X.C) = INFO) 5 s (0] =5 X
is an embedding.

The construction of i is based on the map of simplicial
sets
N(m) : N(F(C)) — N(P(C))

induced by 7. For each n-chain e = (ey, < ---
P(C), we have

< e,,) of

N(m);'(e) = F(C)ea,., ea,) X - X F(C)ea, e,)
and we have the following decomposition

Nu(F(C)) = F(C)ea,.,»ex,) X - X F(C)ey, ea)-
(]) eeN,(P(C))

This observation allows us to extend the embedding con-
structed for regular cases in [ ] to general cases.

Theorem 2.14 For a CW totally normal cellular stratifi-
cation C on X, the above map7 : Sd(X,C) —» X em-
beds SA(X, C) in X as a deformation retract. Furthermore
the deformation retraction is natural with respect to mor-
phisms of cellular stratified spaces.

Again the decomposition (1) allows us to extend the
deformation retraction constructed in [ ] for regular
cases. And we obtain the above theorem.

3. Cellular (Simplicial) Models for Configuration
Spaces

Theorem 2.14 gives us a good simplicial model for the
configuration spaces of graphs. The starting point is the
following observation.

Lemma 3.1 Any graph T, regarded as a 1-dimensional
CW-complex, is totally normal. Thus the product cell de-
composition on T* is also totally normal.

Recall the hyperplanes H; ; in R* used in Example 1.3.
The collection A1 = {H;; | 1 < i < j < k}is called
the braid arrangement of rank k — 1. As we have done in
[ ] for spheres, the braid arrangements can be used
to subdivide the product stratification I in such a way the
resulting stratification contains Confy(I') as a stratified sub-
space.

Note that a hyperplane H in R” cuts R” into two parts.
In general, a real hyperplane arrangement in R” defines a
cellular stratification on R".

Definition 3.2 Let I be a graph with cellular stratification
C. Define a subdivision of the product stratification C* as
follows.
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1. Let {e‘j}ﬂer and {e/ll}/leA] be the sets of 0-cells and 1-
cells in T, respectively. Choose linear orders on Ay
and A.

2. Acell inT* is of the form ej‘l X - -Xefli withey, -+, & =
0 or 1. Choose a permutation o € Xy with

£l Ek
(eﬁ] ><--~><eﬁk)0'

_ 1 \ym 1 \my
= (a product of O-cells) x (em) XX (em) ¢
Lll’ld/,l] < e < U

3. Subdivide each (elllf)’”f by the braid arrangement
Apm,-1 under the identification (e}lj)’"i = R™,

The resulting stratification is called the braid stratification
and is denoted by By ().

The braid stratification is designed to include Conf(I')
as a stratified subspace.

Lemma 3.3 The braid stratification B(T) is invariant un-
der the action of the symmetric group X and contains the
configuration space Conf(I') as a Xy-equivariant stratified
subspace.

Furthermore as a subdivision of a totally normal strat-
ification, B (') and its restriction to Confy(I') are totally
normal.

Definition 3.4 For a graph T, define
(D) = B(F (BiDlcontym)) -

This is our combinatorial model for Confy(I'). Theorem
2.14 guarantees it represents the X;-equivariant homotopy
type of Confy ().

Corollary 3.5 CEraid(l") can be embedded in Confy(I') as a
Xi-equivariant strong deformation retract.

One of the most important features of our model is its ef-
ficiency. We do not have to subdivide graphs to obtain a de-
formation retraction. This fact is very important when we
study the homotopical dimension of configuration spaces.

Definition 3.6 For a topological space X, the homotopi-
cal dimension of X, denoted by dim™ X is defined to be the
minimum of dimensions of CW complexes that are homo-
topy equivalent to X.

By analyzing the combinatorial structure of the acyclic
category F (Bi(D)lcont, (). We have the following estimate
of the dimension of our model.

Theorem 3.7 For any finite graph T, we have
dim C;™(T") < min{|V(D)|, &},
where V(') is the set of vertices inT. In particular, we have

dim™ Conf(I') < min{|V(I')|, k}.

Let L be the set of leaves in a graph I, then I can be de-
formed into I' — L by an isotopy, and we have Confy(I') =5,
Confy(I' — L). By using the minimal cell decomposition of
a given graph and then removing leaves, we obtain an al-
ternative proof of the following theorem of Ghrist [ ]
as a corollary to Theorem 3.7.

Corollary 3.8 For any finite graph T, let v(I') be the num-
ber of essential vertices. Namely v(I') is the number of ver-
tices of valency greater than one in a minimal cell decom-
position of . Then we have

dim™ Confi(T") < min{w("), k}.
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