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Abstract—We consider the problem of decomposing a
compactly supported distribution f : Rn → [0,∞) into
a minimal number of unimodal components by means of
some convex operation (e.g., sum or sup). The resulting
“unimodal category” of f is a topological invariant of the
distribution which shares a number of properties with the
Lusternik-Schnirelmann category of a topological space.
This work introduces the concept of a unimodal category,
provides fundamental examples (�p unimodal category),
and computes various unimodal categories for distributions
on Rn with n small.

1. Introduction

This notes initiates a novel topological approach to the
problem of decomposing distributions f : Rn → [0,∞)
into a convex combination of basis distributions. Instead of
employing a decomposition into analytically defined (e.g.,
normal) distributions, we propose a decomposition into
topologically defined factors. Specifically, we consider the
decomposition of a distribution into a sum of unimodal
distributions: those with a single maximum value and no
other extrema. Such a decomposition is not uniquely de-
fined; however, the minimal number of unimodal sum-
mands is. This unimodal category, ucat( f ), is a coarse
measure of complexity for a distribution.

1.1. Motivation

There are several contexts within which the question
about the number of summands in a unimodal decompo-
sition arises. The first such context is statistics: unimodal
distributions are the primal building blocks of statistical
models. Essentially all classical probability distributions,
including normal, Poisson, Gamma, Beta, Bernoulli, and
more, are all unimodal. The methodology of statistical
modeling essentially forces one to assume that the pres-
ence of several modes in a distribution is a consequence
of its being a mixture of several distributions, and the re-
lationship between the number of modes (essentially, the
number of local maxima of the density, in the multivariate
case) and the number of “components” of the mixture, i.e.,
the number of summands in the convex decomposition, has
been studied by many authors.

To justify the radical difference of our setup from the tra-
ditional statistical one — our lack of any assumptions about
the structure of the summands beyond unimodality — we
can invoke two considerations: (1) The variety of unimodal
building blocks in standard statistical models suggests that
one should try to abstract away any specific distribution,
retaining only the minimal topological properties; and (2)
Any specific analytic form of a density binds the distribu-
tion to some fixed coordinate system, the absence of which
will inexorably force a topological approach. We foresee
applications of this topological decomposition to a variety
of contexts within statistics, as well as visualization (where
decomposition can play a role in efficient encoding of the
images or of multidimensional data).

1.2. Statement of Results

We define the unimodal category, give a complete char-
acterization and method of computation in the univariate
case, and provide some key steps to understanding decom-
positions of higher-dimensional distributions. The spe-
cific contributions include (1) that the unimodal category
is invariant under the right-action of a homeomorphism on
the domain; (2) a simple algorithm for its computation in
the univariate case; and (3) a bivariate characterization as
a function of the Reeb graph of the distribution, labeled
by critical values. We close with a conjecture concerning
the monotonicity of the unimodal category with respect to
pointwise norms used.

1.3. Related work

Morse structures associated to mixtures of multivariate
normal distributions are discussed in [8]. This question al-
ready seems to be of interest to statisticians — even the
simple univariate case is discussed in detail across several
papers [4, 1, 9], while the mixture of non-Gaussian uni-
modal densities is considered in [5, 6]. In particular, it is
known that in mixtures of normal univariate distributions,
the number of modes cannot exceed the number of com-
ponents, a result which does not hold in higher dimensions
(compare [2]).
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2. Unimodal category

Definition 1 For X a topological space, the Lusternik-
Schnirelmann category of X, LScat(X), is the minimum
number of open sets contractible in X which cover X. The
geometric category of X, gcat(X), is the minimum number
of open contractible sets which cover X.

Some authors (including those of [3]) use a reduced cat-
egory, which measures the minimal number of open sets
minus one. We do not follow this convention. Geomet-
ric category gcat is a homeomorphism invariant of a space,
and L-S category LScat is a homotopy invariant. There are
numerous deep connections between category and critical
point theory (the classical motivation for the subject), dy-
namical systems, homotopy theory, and symplectic topol-
ogy. We introduce a new variant of category for distribu-
tions based on decomposition into unimodal factors. For X
a topological space, let D = D(X) denote the set of all com-
pactly supported continuous distributions f : X → [0,∞).

Definition 2 A distribution u ∈ D is said to be unimodal
if the upper excursion sets uc = u−1([c,∞)) have the homo-
topy type of a point for all 0 < c ≤ M and are empty for all
c > M. Such a u has M as its maximal value.

We will refer to the nonempty upper excursion sets
uc ⊂ X as being contractible, though it must be clari-
fied that such sets are contractible in themselves as op-
posed to contractible in X. The latter would be more in line
with the definitions used in Lusternik-Schnirelmann theory,
but would render the theory useless for most applications
(where X = Rn).

Definition 3 Fix a norm ν = ‖·‖ on RN. The unimodal
ν-category of a distribution f ∈ D(X) is defined as the
minimal number ucatν of unimodal distributions uα, α =
1, . . . , ucatν on X such that f is pointwise the ν-norm of the
collection (uα). Specifically, f (x) = ‖(uα(x))‖ for all x ∈ X.

The most natural and fundamental example is the mini-
mal number of unimodal distributions required to represent
a given distribution as a sum of unimodals. Summation
of the components corresponds to the 1-norm on vectors,
leading to the following generalization.

Definition 4 The unimodal p-category of a distribution
f ∈ D is the minimal number of unimodal distributions
uα, α = 1, . . . , ucatp such that f is pointwise an �p combi-
nation. Specifically,

0 < p < ∞ : f (x) =

⎛⎜⎜⎜⎜⎜⎝
∑

α

(uα(x))p

⎞⎟⎟⎟⎟⎟⎠
1
p

(1)

p = ∞ : f (x) = max
α
{uα(x)} (2)

The category ucat2 measures something akin to en-
ergy of a distribution, which ucat∞ is a natural mea-
sure for problems in which mode interference is negligi-
ble. All of these unimodal categories can be viewed as a
deformation from the geometric category of the support,
gcat(supp( f )), which we will identify later as ucat0( f ) =
limp→0+ ucatp( f ).

The following result, while trivial, is the topological in-
variance of unimodal category that makes it applicable to
problems in which distribution data is without a fixed coor-
dinate system.

Lemma 5 Any unimodal ν-category is invariant under the
right-action of the homeomorphism group.

Proof: Let u ∈ D be unimodal and let h ∈ Homeo(X). Then
(u ◦ h)c = h(uc), which, being the homeomorphic image of
a contractible set, is contractible. �

3. Unimodal 1-category

The most natural variant of unimodal category appears
to be ucat1, for which the modal decomposition problem is
additive.

Lemma 6 Assume that f is a Morse function on a manifold
M. Then ucat1( f ) ≤ # max( f ), the number of local maxima
of f .

Proof: The unstable manifolds Wu(p j) of the local max-
ima p j of f are disjoint discs whose closures cover M. Let
u j be the characteristic function of Wu(p j) convolved with
a bump function so as to smooth it to zero near the bound-
ary. These are clearly unimodal. Standard bump function
methods yield that

∑
j u j = f . �

For non-Morse functions, one can replace the upper
bound with the geometric category of the set of maxima.
In either context, the upper bound is often not sharp. An
exact answer can be computed in some cases.

Definition 7 Assume that a unimodal decomposition of
f =

∑
α uα is given. A set U ⊂ supp( f ) is called max-

free if U does not contain any of the critical points of any
fα. For any max-free U we denote by dep(U) the depth of
U, the number of functions of the unimodal decomposition
not vanishing on U:

dep(U) = #{α : U ∩ supp(uα) � ∅}. (3)

Computing unimodal 1-category solves other p-category
problems:

Lemma 8 For all f ∈ D, ucatp( f ) = ucat1( f 1/p).

Proof: Unimodality is preserved under powers, and

f =

⎛⎜⎜⎜⎜⎜⎝
∑

α

up
α

⎞⎟⎟⎟⎟⎟⎠
1
p

⇔ f p =
∑

α

up
α . (4)
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�
We commence with a computation of the unimodal 1-

category on D(R1). We assume that this function has iso-
lated critical points. Up to a homeomorphism, this distribu-
tion is completely characterized by the up-down sequence
of critical values corresponding to local minima and max-
ima,

0 = n0 < m0 > n1 < . . . < mk > nk = 0; (5)

where ni = f (x2i); mi = f (x2i+1); x0 < x1 < . . . < x2k;
and i = 0, . . . , k, counting the initial and final point of the
support as local minima.

Proposition 9 If an open interval (x2i, x2 j) bounded by lo-
cal minima is max-free (for some unimodal decomposition
of f ), then

ni − mi + ni+1 − . . . − mj−1 + n j ≥ 0. (6)

Proof: The result follows immediately from the combina-
tion of the following facts: (1) The total variation is subad-
ditive; and (2) The total variation of a function monotone
on an interval is at most its maximal value on the interval
(attained at one of the boundary points). Computing the
total variations for f concludes the proof. �

Consider the open intervals with endpoints at the local
minima {x2i}k1. Call such an interval forced-max if the in-
equality (6) is violated there. Obviously, forced max inter-
vals form an ideal: any interval containing a forced-max
interval is itself forced-max.

Theorem 10 Let f ∈ D(R) have maximal values (mi)k1 and
minimal values (ni)k0 ordered according to the critical point
order in the domain. Then ucat1( f ) is equal to the maximal
number of non-intersecting forced-max intervals:

ucat1( f ) = max
N

(x2i0 , x2i1 ), . . . , (x2iN−1 , x2iN ) forced-max

(7)

Proof: It is clear that for any collection of N noninter-
secting forced-max intervals, the number of summands in
the unimodal decomposition cannot be less than N: each
forced-max interval, trivially, contains a critical point of
at least one of the functions of the decomposition. The
following algorithm yields an explicit unimodal decompo-
sition and, simultaneously, a collection of nonintersecting
forced-max intervals, one for each summand.

We construct the functions uα iteratively, left to right, ac-
cording to Algorithm Sweep. This entails sweeping f from
the left and pulling out unimodal factors which, on their
descent, compensate for the remaining factors as much as
possible by descending according to the (positive) slope
d f .

The proof that this construction is minimal follows from
the observation that the local minima spanning the curves
in the graphical construction form a max-forced partition
of the support of f . �

Algorithm 1 {uα} = Sweep( f )

Require: f ∈ D(R) with minima ni = f (x2i)k0 and maxima
mi = f (x2i−1)k1

1: u0 ⇐ 0 ; α⇐ 1 ; gα ⇐ f
2: while gα � 0 do
3: yα ⇐ first maximum of gα from left
4: uα| (−∞, yα]⇐ gα
5: duα| (yα,∞)⇐ min(d f , 0)
6: uα ⇐ max(uα, 0)
7: increment α
8: gα ⇐ f −∑β<α uβ
9: end while

10: return {uβ}β<α

We have observed that, in the univariate case, the uni-
modal 1-category is a function of the critical values and the
order in which they appear; however, there is not a strict
dependence on this ordering. For example, in accordance
with Lemma 5, ucat1 must be invariant under reversing the
order of the critical points (x �→ −x). This in itself is an in-
teresting observation: running Algorithm Sweep on f (−x)
reveals the limits to uniqueness of modal decompositions.
There is in fact a weaker dependence on the labeled Reeb
graph of the distribution.

The Reeb graph Γ f of a f ∈ D(X) is the rooted metric
graph given by the quotient space Γ f = X/ ∼, where x ∼ x′
iff f (x) = f (x′) and x, x′ lie in the same connected compo-
nent of f −1(c). The metric on Γ f is induced by that on the
image of f and the root of Γ f is the point at height zero. To
each edge of the Reeb graph we may associate the diffeo-
morphism type of the corresponding connected component
of f −1(c). We will refer to this system of marks as the Reeb
data.

In particular, the vertices of the graph correspond to the
connected singular level sets of f and the edges correspond
to non-singular level sets. For f ∈ D(R) of reasonable
non-degeneracy, Γ f is a finite tree. The construction of this
tree from an excursion is well-known in combinatorics and
probability theory (cf. [7]). It follows from the proof of
Theorem 10 that the dependence of ucat1 on the critical
values is independent of their ordering; in other words, one
can swap the subexcursions bordering at a local maxima
without affecting the unimodal number.

Corollary 11 On D(R), ucat1 is a function of the isomor-
phism type of the Reeb graph (as a rooted, metric graph).

4. Toward multivariate decompositions

Multivariate distributions introduce a number of com-
plexities. We sketch a few results in this section, reserv-
ing a more complete treatment for a later work. An indi-
cation of the troubles arising in the multivariate case, we
notice that an analogue of Proposition 9 is not valid there.
For example, a convex combination of the two unimodal
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bivariate functions, exp(−(y/100)2 − (x − sin(y)/5)2) and
exp(−(y/100)2−(x+0.3)2), with weights 1

2 , reveals a distri-
bution with higher-appearing complexity. The dependence
of the unimodal category on the Reeb graph noted in Corol-
lary 11 can be extended to planar distributions:

Proposition 12 The unimodal 1-category of f ∈ D(Rn) for
n = 1, 2 is a function of the combinatorial type of the Reeb
graph of f labeled by critical values.

Proof: For dimension one, this is Corollary 11. In dimen-
sion two, the result follows from the fact that a Morse func-
tion on the plane can be reconstructed, up to a diffeomor-
phism of the domain, from the isotopy class of the figures
eight formed by the connected components of the level sets
containing critical points of f , and the critical values at
these points. �

In higher dimensions, the Reeb graph alone does not
carry enough information: for example, a critical point of
signature (2, 1) is a vertex of valence 2 on the Reeb graph,
with no information about the change of topology under
the surgery defined by the point. In dimension two, the
change of topology is unambiguous; in higher dimensions
it is necessary to specify the Reeb data.

Proposition 13 Fix a (non-unimodal) C1 distribution f ∈
D(Rn). For any 0 < p < ∞, the unimodal p-category of
the shifted distribution obtained by adding C1supp f to f
for constant C ≥ 0 is a non-increasing function of C which
stabilizes to

lim
C→∞ ucatp

(
f +C1supp f

)
= 1 + gcat(supp f ). (8)

Proof: By Lemma 8 it suffices to prove the result for p = 1.
Monotonicity in C is clear: a constant added to a unimodal
function is still unimodal. Assume by compactness and
smoothness that the differential satisfies ‖d f ‖ ≤ M. Let
x0 ∈ supp f be the maximum of f and let κ denote the con-
ical function κ(x) = M ‖x − x0‖ (smoothed at the cone point
if desired). Then

f + C1U = ( f + (C − κ)1U) + (κ1U), (9)

and these summands are unimodal for C sufficiently large.
�

If one normalizes the distributions f + C1supp f to have
unit mass, then one sees clearly the effect of increasing C
is to reduce the total variation.

5. Unimodal∞-category

The norm used in a unimodal category can be consid-
ered as a model of interference between modes, with ucat1

measuring additive mode interference. One natural limit is
perfect non-interference, as measured by the∞-norm: only
the dominant mode matters. Computing the unimodal ∞-
category in the univariate setting is trivial.

Lemma 14 For any f ∈ D(R1), ucat∞( f ) equals the num-
ber of local maxima of f .

Proof: The upper bound is obtained via Lemma 6; the
lower bound is trivial. �

Lemma 15 ucat∞ is invariant under the left action of
Homeo[0,∞).

Proof: For h ∈ Homeo[0,∞), maxα{uα} = maxα{h ◦ uα}. �
In cases where exact computation of unimodal category

is difficult, one turns to bounds based on analytic, geomet-
ric, or topological features of the distribution. We believe
that ucat∞ will prove easier to compute on multivariate dis-
tributions, and that the following will prove instrumental in
obtaining clear bounds.

Conjecture 16 For any 0 < p < q ≤ ∞ and any f ∈ D(X),
ucatp( f ) ≤ ucatq( f ).
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