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Abstract—This paper considers dynamics of two sim-
ple chaotic spiking oscillators (CSOs). The CSOs re-
peat vibrate-and-fire dynamics and can exhibit various
chaotic/periodic spike-trains. The CSO with piecewise lin-
ear vector field has ”isochronism” property and inter-spike
interval spectrums can have narrow-bands discretely. The
CSO with piecewise constant vector field does not have
”isochronism” property and inter-spike interval spectrums
can have a wide-band.

1. Introduction

An integrate-and-fire switch (IFS) is a key element and
can cause a variety of nonlinear phenomena. Various spik-
ing neuron models include the IFS that causes reset of a
state variable to a base level. Repeating such operation, the
spiking neuron models exhibit various spike-trains [1]-[2].
Pulse-coupled neural networks and signal/image process-
ing are studied based on spiking neuron models and spike-
trains [3]-[5]. Analysis of dynamics including the IFS and
spike-trains are important for both fundamental nonlinear
problem and consideration of engineering applications.

This paper studies chaotic spiking oscillators (CSOs)
[6], [7]. The CSOs have two state variables that can vi-
brate divergently. If one state reaches a threshold level,
the IFS is occurred and the state is reset to a base level in-
stantaneously. The CSOs then output a spike. Repeating
the vibrate-and-fire dynamics, the CSOs can output spike-
trains.

First, we consider the CSO with piecewise liner vec-
tor field (PWL-CSO). The trajectory of the PWL-CSO is
piecewise smooth and can draw unstable spirals in the
phase plane. The PWL-CSO exhibits periodic/chaotic at-
tractors and spike-trains. In order to clarify characteristics
of spike-trains, we show inter-spike intervals (ISIs) spec-
trums and distribution in numerical simulations. Focusing
on switching moment, we can derive an 1-D return map
and can analyze the dynamics precisely.

Second, we consider the CSO with piecewise constant
vector field (PWC-CSO). The trajectory is PWL and can
draw unstable rectangular spirals in the phase plane. The
PWC-CSO exhibits only chaotic attractor and spike-trains.
In numerical simulations, we show ISI spectrums and dis-
tribution. Since the trajectory is PWL, the return map is
PWL and we can analyze the dynamics theoretically [8].

We have found properties of the two CSOs as the follow-
ing. (1) The PWL-CSO has ”isochronism” with respect to
vibration of the state whereas the PWC-CSO does not have
the isochronism. (2) As the parameter varies, the PWL-
CSO can exhibit periodic spike-trains with line spectrum.
The PWC-CSO can exhibit chaotic spike-trains with line-
like spectrum [9]. (3) The PWC-CSO can have wide-band
ISI spectrum whereas the PWL-CSO can not have wide-
band but narrow bands ISI spectrums.

Dynamics of the CSOs have been studied in [9], [10],
but these papers have not been discussed the comparison
between the two CSOs and ISI characteristics.
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Figure 1: Dynamics of the PWL-CSO for a = 0.2 and q =
0.

2. Piecewise Linear Chaotic Spiking Oscillator

We consider dynamics of the PWL-CSO. The dynamics
can be described as the following equation:

{
ẋ1 = x2

ẋ2 = ax2 − x1
for x2(τ) < 1, (1)

(x1(τ+), x2(τ+)) = (x1(τ), q) if x2(τ) = 1, (2)

where ”·” denote differentiation by dimensionless time τ.
x1 and x2 are dimensionless state variables, respectively.
This equation has two parameters a and q. For simplicity,
we assume 0 < a < 2 and −1 < q < 1. In this case, Eq.
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Figure 2: Trajectory and attractors for a = 0.2 in the phase
space. (a) Typical trajectory for x2 < 1, (b) Periodic attractor for
q = −0.81, (c) Chaos for q = 0, (d) Chaos for q = 0.81.

(1) has unstable complex eigenvalues and the states x1 and
x2 can vibrate divergently as shown in Fig. 1. If x2 reaches
threshold 1, x2 is reset to base q instantaneously holding
continuity property of x1. The PWL-CSO then outputs a
spike y = 1:

y(τ+) =

{
1 if x2(τ) = 1
0 otherwise.

(3)

Repeating vibrate-and-fire dynamics, the PWL-CSO out-
puts various spike-trains y(τ). The PWL-CSO exhibits
chaotic/periodic attractors as shown in Fig. 2. When the
trajectory draws unstable spiral as shown in Fig. 2 (a), let
a trajectory start from X̃0 on positive x1-axis at τ = 0. It
returns to the positive x1-axis at point X̃1. Let T be time
of ”one cycle” from a start point X̃0 to a return point X̃1 on
positive x1-axis. The rotation time T is constant and the
PWL-CSO has the ”isochronism” property.

Let τn be the n-th firing time and ISI Δτn as shown in
Fig. 1. The n-th ISI can be given by Δτn = τn+1 − τn where
n is a positive integer. Fig. 3 shows ISI spectrums corre-
sponding to Fig. 2 (b) to (d). Fig. 4 shows a diagram of
distribution of the ISIs. As q approaches 0, the maximal
length of the ISIs becomes long. As q approaches 1, the
maximal length of the ISIs becomes short. The PWL-CSOs
exhibits periodic attractor and has line spectrum, approach-
ing to q = −1.

In order to analyze the dynamics precisely, we derive an
1-D return map. Let Lq = {(x1, x2) | x2 = q} and let a point
on Lq be represented by its x1-coordinate. Let us consider
the trajectory that is reset to a point X0 on Lq at the first
firing time τ1 as shown in Fig. 5. The trajectory vibrates
below the threshold and resets to a point X1 on Lq at the
second firing time τ2. Let X0 and X1 be the first and second
reset points, respectively. Since X0 determines X1, we can
define the 1-D return map:
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Figure 3: ISI spectrums for a = 0.2. Number of spikes
= 10000. (a) q = −0.81, (b) q = 0, (c) q = 0.81. Fig. (a) to (c)
correspond to Fig. 2 (b) to (d).
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Figure 4: Distribution of the ISIs for a = 0.2.

F : Lq → Lq, X0 �→ X1. (4)

Fig. 6 shows the return maps corresponding to Fig. 2 (b)
and (d).

3. Piecewise Constant Chaotic Spiking Oscillator

In this section, we consider dynamics of the PWC-CSO
that is given by applying signum function to the right-hand
sides of the first and second lines of Eq. (1).

{
ẋ1 = sgn(x2)
ẋ2 = sgn(ax2 − x1)

for x2(τ) < 1 (5)

sgn(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for x > 0
0 for x = 0
−1 for x < 0
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Figure 5: Definition of the return map.
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Figure 6: Typical return maps for a = 0.2. (a) Stable fixed
point for q = −0.81, (b) Chaos for q = 0.81. Fig. (a) and (b)
correspond to Fig. 2 (b) and (d).

(x1(τ+), x2(τ+)) = (x1(τ), q) if x2(τ) = 1. (6)

The dimensionless equation has two parameters a and q
where 0 < a < 1 and −1 < q < 1 for simplicity. Since
the equation has PWC vector fields, the trajectory is PWL.
When 0 < a < 1, the trajectory can vibrate divergently
and can draw rect-spiral as shown in Fig. 7 and Fig. 8
(a), respectively. When the trajectory draws unstable rect-
spiral, let a trajectory start from X̃0 on positive x1-axis at
τ = 0. It returns to a point X̃1 on positive x1-axis at time T .
X̃1 and the rotation time T is given by

X̃1 = α
2X̃0, T = (α2 − 1)aX̃0, α ≡ a + 1

a − 1
. (7)

That is, T depends on starting point X̃0 and the PWC-
CSO has an important property ”non-isochronism”. Re-
peating the vibrate-and-fire dynamics, the PWC-CSO ex-
hibits chaotic attractors and spike-trains as shown in Fig.
8. We show the ISI spectrums in Fig. 9 corresponding to
FIg. 8 (b) to (d). The PWC-CSO has various type of the
ISI spectrums. As q approaches 1, the ISI Δτn = 1−q dom-
inates. Fig. 10 shows the diagram of distribution of the
ISI. In the PWC-CSO, only chaotic spike-trains exist. As q
approaches 0, the ISI distribution becomes wide-band.

Using the similar consideration as the PWL-CSO, we
can derive an 1-D return map F : Lq → Lq, X0 �→ X1.
Fig. 11 shows typical return maps corresponding to Fig. 8
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Figure 7: Dynamics of the PWC-CSO for a = 0.2 and q =
0.
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Figure 8: Trajectory and attractors of the PWC-CSO for
a = 0.2. (a) Typical trajectory for x2 < 1, (b) Chaos for q =
−0.81, (c) Chaos for q = 0, (d) Chaos for q = 0.81.

(b) and (d). The map is PWL and theoretical evidence for
chaos generation can be found in [7].

4. Comparison between the two CSOs

We describe the comparison between the two CSOs as
the following.

(A) Trajectory and attractor
The PWL-CSO has the ”isochronism” property and can ex-
hibit chaotic/periodic attractors. However, the PWC-CSO
has ”non-isochronism” and exhibits only chaotic attractor
(see Fig. 2 and Fig. 8).

(B) ISI spectrums
When q = 0, the ISI spectrums of the PWL-CSO can have
some narrow-bands discretely whereas the PWC-CSO has
continuous wide-band spectrum. (see Fig. 3 and Fig. 9).

(C) ISI distribution
Around q = 0 in the PWL-CSO, long length of the ISI can
appear. For q = 0, especially, the maximal length of the
ISI becomes infinitely. In the PWC-CSO, however, the ISI
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Figure 9: ISI spectrums of the PWC-CSO for a = 0.2.
Number of spikes = 10000. (a) q = −0.81, (b) q = 0, (c)
q = 0.81. Fig. (a) to (c) correspond to Fig. 8 (b) to (d).

is finite length (see Fig. 4 and Fig. 10). For q > 0, the
PWL-CSO exhibits chaos and window alternatively [10]
whereas the PWC-CSO exhibits chaos and island with line-
like spectrum alternatively [9].

5. Conclusions

We have studied dynamics of the two CSOs. We have
clarified ISIs characteristics and have compared between
the two CSOs. Future problems include detailed analy-
sis for bifurcation, comparison for wider parameter regions
and consideration for spike-based engineering applications.

References

[1] J. P. Keener, F. C. Hoppensteadt & J. Rinzel, ”Integrate-
and-fire models of nerve membrane response to oscillatory
input,” SIAM J. Appl. Math., 41, pp. 503-517, 1981.

[2] E. M. Izhikevich, ”Simple Model of Spiking Neurons,”
IEEE Trans. Neural Networks, 14, pp. 1569-1572, 2003.

[3] S. R. Campbell, D. Wang and C. Jayaprakash, ”Synchrony
and desynchrony in integrate-and-fire oscillators,” Neural
computation, vol. 11, pp. 1595-1619, 1999.

[4] H. Nakano and T. Saito, ”Grouping synchronization in a
pulse-coupled network of chaotic spiking oscillators,” IEEE
Trans. Neural Networks, 15, 5, pp. 1018-1026, 2004.

nτΔ

q

12

0

6

0.1− 0 0.1

Figure 10: Distribution of the ISIs of the PWC-CSO for
a = 0.2.

nx

1+nx
(a)

0.1

0.1−
nx

1+nx
(b)0.1

0.10.1−0.1

Figure 11: Typical return maps of the PWC-CSO for a =
0.2. (a) Chaos for q = −0.81, (b) Chaos for q = 0.81. Fig. (a)
and (b) correspond to Fig. 8 (b) and (d).

[5] H. Hamanaka, H. Torikai and T. Saito, ”Quantized spiking
neuron with A/D conversion functions,” IEEE Trans. Cir-
cuits Syst. II, 53, 10, pp. 1049-1053, 2006.

[6] H.Nakano and T.Saito, ”Basic dynamics from an integrate-
and-fire chaotic circuits with a periodic input,” IEICE
Trans. Fundamentals, E84-A, 5. pp.1293-1300, 2001.

[7] Y. Matsuoka and T. Saito, ”A Simple Chaotic Spiking Os-
cillator Having Piecewise Constant Characteristics,” IEICE
Trans. Fundamentals, E89-A, 9, pp. 2437-2440, 2006.

[8] T.Tsubone and T.Saito, ”Manifold piecewise constant sys-
tems and chaos,” IEICE Trans. Fundamentals, E82-A, 8,
pp.1619-1626, 1999.

[9] Y. Matsuoka, T. Hasegawa and T. Saito, ”Chaotic Spike-
train with Line-like Spectrum,” IEICE Trans. Fundamen-
tals, E92-A, 4, pp. 1142-1147, 2009.

[10] T. Hasegawa and T. Saito, ”Bifurcation and Windows in a
Simple Piecewise Linear Chaotic Spiking Neuron,” Proc. of
ICONIP, 2008.

[11] A. Lasota and M. C. Mackey, ”Chaos, Fractals, and Noise -
Second Edition,” Springer-Verlag, 1994.

- 182 -


	Navigation page
	Session at a glance
	Technical program

