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Abstract—Topographic Cellular Active Contour
(TCAC) algorithms are designed for solving difficult
segmentation tasks at high speed. Implementation of
a TCAC method on both parallel analogue and digital
computing architectures is discussed in this paper. In the
context of 3D echocardiography the performance of the
TCAC algorithm is compared to other methods.

1. Introduction

Algorithms designed for machine vision applications
such as medical imaging, surveillance, etc. in most cases
need to segment the raw image flow and/or track a region in
it. To solve this task, many algorithms were proposed stem-
ming from the original Active Contour (AC) models [1] and
others based on partial differential equations (PDEs) [2].
However the high computational cost associated to these
methods can hamper their application to solve problems
where fast processing is required.

Using an appropriate discretization approach these mod-
els can be mapped to a cellular structure described by non-
linear ordinary differential equations (ODEs), i.e. to a Cel-
lular Nonlinear Network (CNN) [3] architecture. Topo-
graphic Cellular Active Contour (TCAC) [6] methods can
be considered as a space and/or time discretized implemen-
tation of the original active contour or PDE models [4].
The Pixel Level Snakes (PLS) [5] is a TCAC technique
where the contours are explicitly represented and evolve
using discrete iteration steps to deform the contour towards
local minimal distance curves based on a metric defined
as a function of the features to be segmented. The Cellu-
lar Wave Computing [6] method (CWC) is based on the
non-iterative implicit region propagation operator where
the contours are defined by the boundaries of trigger waves.

This paper presents implementation details of the high
speed CWC method in the context of 3D echocardiogra-
phy where the task was to extract the endocardial boundary
of the right atrium from 3D ultrasound data. The paper is
organized as follows. The continuous time (non-iterative)
and discrete time (iterative) implementation of the CWC
method used for endocardial boundary extraction is pre-
sented in Section 2. Section 3 describes experiments and
a comparison assessing the computational performance of
the CWC method.

2. Constrained Wave Computing

Low-level image processing operators like filtering, edge
detection, binary hole filling, feature extraction, etc. are
computationally intensive. These operations are inherently
pixel-parallel, i.e. identical, localized operations are per-
formed on every pixel. Efficient image processing sys-
tems can be designed by associating each image pixel with
an image processing circuitry and allowing local connec-
tions between neighboring processing cells. Each cell can
have local memories and can perform basic arithmetic and
logic operations on pixel values of their local neighbor-
hood. CNNs [7] represent a powerful framework for this
concept. In many CNN implementations, each individual
cell circuitry is a generic realisation of Eq. (2), i.e. CNNs
can be used to approximate solutions of PDEs. A number
of different CNN processor implementations are available
for parallel image processing [8] [9] on which various diffi-
cult image processing problems were solved at high speed
[10].

Implicit models represent an important class of image
segmentation approaches. Motivated by [11], [2], [12] a
propagating wavefront can be defined by a geometric flow.
The propagation velocity is made up of two terms, the regu-
larity of the boundary and image derived information. The
model of CWC is given by a reaction-diffusion type PDE:

∂IP(x, y, t)
∂t

=div grad(IP(x, y, t))+

+ F1(IControl(x, y, t0)) + F2(IP(x, y, t)) (1)

where F1 and F2 are nonlinear functions, I(x, y, t) :
[0,N]2 × [0,T ] → [0,M]. IP(x, y, t) denotes an intensity
image in which a black region is evolving from its ini-
tial state controlled by external image forces represented
in IControl(x, y, t0).

The solution of the PDE can be approximated using
spatial discretization made in equidistant steps in both di-
rections, ∆x = ∆y = h = 1. This way, IP(x, y, t) is
mapped onto a CNN[13, 3] array such that the state value
IX(i, j, t) of a CNN cell at a grid point i, j is associated with
IP(ih, jh, t). Using Taylor-series expansion of IP(x, y, t) the
CNN operator (template) corresponding to the second spa-
tial derivative can be obtained [14]. The image derived
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spatial constraint term F1(.) is replaced by the linear com-
bination of the values stored in IControl(i, j, t0) and F2(.) is
replaced by the nonlinear function g that converts the dif-
fusion into a region propagation process. The ordinary dif-
ferential equation approximating the solution of Eq. (1) at
the grid point i, j can be formulated as:

dIX(i, j, t)
dt

= − IX(i, j, t) +
c1

4
[IP(i − 1, j, t)+

+ IP(i + 1, j, t) + IP(i, j − 1, t) + IP(i, j + 1, t)]+
+ z(i, j) + g[IX(i, j, t)] (2)

where IP(i, j, t) = f [IX(i, j, t)] and g[.] = c0 · f [.]; the non-
linear, sigmoid-type function f is defined as f [IX(i, j, t)] =

0.5 · (|IX(i, j, t) + 1| − |IX(i, j, t) − 1|). Velocity of the
propagating front is depending on the actual content of
the image formulated in the term z(i, j) = zconst +∑

k,l∈S 1(i, j) b(k,l)IControl(k, l, t0) where S 1(i, j) represents the
3 × 3 neighborhood of the cell i, j, contributions of the
neighbors are weighted by the values of b(k,l).

Setting constants in Eq. (2) to c0 = 3 and c1 = 1 and
b0,0 = −2 and zconst = 3.75 an expanding binary wave pro-
cess is generated (see [12] for an in-depth analysis). In the
specific application field of endocardial boundary extrac-
tion from echocardiographic recordings, IControl is associ-
ated with the raw ultrasound data taken from the input data
set at a specific time instant and the value of IP at t = 0
is a small black patch inside the cavity. The non-iterative
constrained wave process set up this way can extract the
endocardium from the raw ultrasound data in a single in-
struction on a continuous time CNN processor[15, 16].

Using explicit forward Euler discretization Eq. (2) can
also be solved in the discrete time domain. In that case Eq.
(2) becomes:

IX(i, j, n + 1) =(1 − ∆t) · IX(i, j, n) + ∆t
c1

4
[IX(i − 1, j, n)+

+ IX(i + 1, j, n) + IX(i, j − 1, n)+
+ IX(i, j + 1, n)] + z(i, j) + ∆t · g[IX(i, j, n)]

(3)

where z(i, j) = zconst + ∆t
∑

k,l∈S 1(i, j) b(k,l)IControl(k, l, n0),
IP(i, j, n + 1) = f [IX(i, j, n + 1)]; g[.] and f [.] remain as
defined in Eq. 2. Iterating Eq. (3) in time with sufficiently
small ∆t approximates the solution of the continuous time
model. The discrete time model can be solved on a much
wider range of processors but it is obviously much slower
than the continuous time model implemented on the ACEx
processors [16].

The discrete-time CNN (DTCNN) model [17] is ob-
tained from the standard CNN equations when ∆t = 1
in the forward Euler discretization scheme. The DTCNN
implementation of an algorithm might not converge to
the original solution. DTCNNs or other similar pixel-
parallel ”single instruction multiple data” (SIMD) architec-
tures [18, 19, 20] are particularly suitable to execute mor-
phology operations on images in a pixel-parallel fashion.

Figure 1: Local neighborhood operators used in the dis-
crete time model of the CWC method. On all pixels of
the eroded version of IP(i, j, n), ”must be black” masks (ro-
tated masks with 90 180 and 270 are not shown) set pixels
of the patch image IP(i, j, n + 1) black that have a neigh-
borhood of more than four black pixels (1st and 2nd mask
images). ”Valid black” masks (rotated versions not shown)
select pixels having exactly three neighboring black pixels
that are adjacent to each other (3rd and 4th images). The
selected pixels correspond to the edge of the patch that is
deformed under the guidance of control constraints to fit
image features in IControl(k, l, n0). Pixels in IP(i, j, n + 1) se-
lected neither by the ”must be black” nor by ”valid black”
masks are turned to white eliminating singular black pix-
els disconnected from the main patch. For the remaining
edge pixels of the patch image, the average grayscale level
of the neighboring pixels on the control image correspond-
ing to the black and white pixels in the patch image are
calculated (rightmost image). If the difference between the
”white” and ”black” average values is below a local differ-
ence threshold, the pixel is set to white, otherwise to black.

The solution of the discrete time CWC model formulated
in Eq. (3) can be approximated on such architectures as
follows.

For every pixel in IP(i, j, n), spatial constraints on the
local, nearest neighborhood of every pixel are checked
in a properly defined sequence to find the new value of
IP(i, j, n + 1). The internal constraints are represented by
hit-and-miss masks. Hit-and-miss is a general binary mor-
phological operation that can be used to look for particular
masks (patterns) of foreground and background pixels in
an image. Internal constraints ensure that the patch will not
contain singular white pixels, and fill up the deeper con-
cavities along the boundary of the patch. ”Must be black”
mask checking (see Fig. 1) sets pixels of the patch image
black that have a neighborhood of more than four black
pixels.

”Valid black” masks select pixels having exactly three
neighboring black pixels that are adjacent to each other.
The selected pixels correspond to the edge of the patch that
is deformed under the guidance of control constraints to fit
image features in IControl(k, l, n0). Pixels in IP(i, j, n + 1) se-
lected neither by the ”must be black” nor by ”valid black”
masks are turned to white in eliminating singular black pix-
els disconnected from the main patch. Grayscale spatial
constraints are applied only to the result of internal con-
straint checking, i.e. to the current edge pixels of IP(i, j, n).
The algorithm calculates the average grayscale level of the
neighboring pixels on the control image corresponding to
the black and white pixels in the patch image, respectively.
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If the difference between these ”white” and ”black” aver-
age values is below a local difference threshold, it sets the
pixel to white, otherwise to black.

The grayscale average comparison is the essential con-
tour extraction step. By computing the intensity difference
between the inner and outer side of the region boundary, the
algorithm approximates the component of the local gradi-
ent orthogonal to the boundary of the patch. The patch
is expanding if the intensity gradient is greater than a lo-
cal difference threshold, and shrinking when it is less. In
the specific application of echocardiography, where the car-
diac wall to be segmented is represented by locally bright
regions in IControl(k, l, n0), the patch approaching from the
center of the cavity ”sees” a gradual increase in the aver-
age intensity until the intensity plateau of the cardiac wall
is reached. This change of gradient amplitude is detected
by this method.

3. Experiments and Results

The continuous time version of CWC was implemented
on the 128 × 128 pixels resolution, massively parallel pro-
cessor (ACE16k [16]). The discrete time version of CWC
was implemented in C language and ran on a PC (Pentium
4 3GHz with 1Gb RAM) to serve as a reference for perfor-
mance evaluation.

The CWC method implemented on the massively paral-
lel processor achieved 500 frames/s (fps) performance out-
performing the Pentium 4 implementation that reached 40
fps. The performance advantage of the continuous time
implementation of CWC is caused by application of the
so-called constrained trigger wave operator [12] that is a
dynamic operator solving the contour detection problem in
a single instruction.

Echocardiography is a specific application field used
to evaluate the computational performance of the CWC
method against other methods (see Table 1). Most methods
were designed to segment the LV and use a priori learned
shape information. The time required for shape learning
was not included in the figures of Table 1. Also, the reader
should keep in mind, that the proposed method was applied
to extract the right atrium whereas other methods were ap-
plied to the rather different, geometrically much simpler
problem of extracting the left atrium.

The integer performance measurements executed in a
standardized test environment (SPEC R©, SPECint2000,
www.spec.org) were used to bring processor performances
to a common ground. Content of this comparison table
should be taken with great caution and it is not intended as
a rigorous performance analysis. 2D and 3D methods were
brought to a common ground via calculating the number of
processed frames per second (fps). For 3D methods, if the
published performance result was in volumes per second,
the volume per second value was multiplied by the lowest
spatial resolution to get fps.

We are aware that even after this transformation, fps

gives slightly distorted information about the performance
of the original algorithm. Therefore we did not go further in
transforming results to a common measure, because further
spatial scale changes would not have taken into account the
unknown ”slow down” ratio specific to each different algo-
rithmic approach when processing data sets with different
resolutions.
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