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Abstract—This paper discusses a link between the
loopy belief propagation (LBP) algorithm and the
Graph zeta function. The LBP algorithm is a nonlin-
ear iteration to approximate the marginal or posterior
probabilities required for various statistical inference,
using the graph structure to define the joint probabil-
ity. The theoretical properties of the LBP algorithm
are not easy to analyze because of the complex nonlin-
earity and the graph structure. The derived connec-
tion with Graph zeta function involves the mathemat-
ical relation with the properties of the graph, leading
various theoretical analysis of the LBP algorithm.

1. Introduction

Graphical modeling is useful for describing a prob-
ability distribution using the local interactions among
variables. It has been used in many fields such as
statistics, statistical physics, coding theory, and so on.
For statistical inference with a graphical model, we of-
ten need to marginal out some or all of the variables.
This computation, however, causes combinatorial ex-
plosion for large graphs and discrete variables.

The belief propagation (BP, [8]) was first proposed
as an efficient local propagation algorithm for comput-
ing all the marginals for trees. In later years, the it-
eration has been applied to graphs with cycles (Loopy
BP (LBP) [6]), which has been found to give successful
approximations in various applications, e.g. [4].

The theoretical properties such as convergence and
correctness of the LBP algorithm, however, have not
been clarified completely because of its nonlinear and
combinatorial nature, though many works have been
done ([14, 11, 3, 5] etc).

Following the previous work [13], this paper dis-
cusses a connection between the LBP algorithm and
the graph zeta function. The main advances over [13]
are (i) the connection is shown for a more general hy-
pergraph (ii) the formulation by the Lagrange duality
for the Bethe free energy is used.

2. Loopy BP and Bethe free energy

A hypergraph H = (V, F ) consists of a finite set of
vertices V and a set of hyperedges F . A hyperedge is a
non-empty subset of V , and often called a factor. For

α1 = {1, 2},
α2 = {1, 2, 3, 4},
α3 = {4}.

Figure 1: Bipartite graph representation.

i ∈ V , the neighbors of i is Ni := {α ∈ F |i ∈ α}, and
for a hyperedge α ∈ F the neighbors of α is Nα := {i ∈
V |i ∈ α} = α. di := |Ni| and dα := |Nα| = |α| are
called degree. If the degree of every hyperedge is two,
the hypergraph is identified with an ordinary graph. A
hypergraph H can be represented as a bipartite graph
with vertex nodes and factor nodes (Fig. 1)

A hypergraph H is connected (resp. tree) if the cor-
responding bipartite graph is connected (resp. tree).
The nullity of H is denoted by n(H); n(H) = |V | +
|F |− |E⃗|. H is a tree iff it is connected and n(H) = 0.

Let H = (V, F ) be a hypergraph. For each i ∈ V ,
a variable xi that takes values in Xi is associated. A
probability density function p on x = (xi)i∈V is said
to be factorized with respect to H if it has the form

p(x) =
1

Z

∏
α∈FΨα(xα), (1)

where xα = (xi)i∈α, Z is the normalization constant
and Ψα are positive valued compatibility functions.

Many inference problems involve computation of
marginal probaiblities. If the variables take a value
in a finite set, a straightforward computational cost is
exponential to the number of variables, thus infeasible
for large graphs. In such cases, LBP approximates the
marginals efficiently. It is known [15] that the LBP can
be derived as a minimization procedure of Bethe free
energy, which is used as an approximation of Gibbs
free energy. We summarize their result below. Let
bα(xα) and bi(xi) (α ∈ F, i ∈ V ) be local probability
density functions, which sum up to 1. The Bethe free
energy is defined by

F ({bα(xα), bi(xi)}) =
∑
α∈F

∑
xα

bα(xα) log
bα(xα)

Ψα(xα)

+
∑
i∈V

(1− di)
∑
xi

bi(xi) log bi(xi).
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Consider the minimization problem on the restriction
of “local consistency”, i.e.,

∑
xαri

bα(xα) = bi(xi) for
each i ∈ α. By introducing the Lagrangean multi-
pliers, the condition of the stationary points can be
expressed as [15]

mα→i(xi) = ω
∑
xαri

Ψα(xα)
∏

j∈α,j ̸=i

∏
β∋j,β ̸=α

mβ→j(xj),

and
bi(xi) := ω

∏
α∋i

mα→i(xi) (2)

bα(xα) := ωΨα(xα)
∏
j∈α

∏
β∋j,β ̸=α

mβ→j(xj), (3)

where ω denotes (not necessarily the same) normaliza-
tion constants. This gives a message passing method
to obtain a stationary point of the minimization:

mt+1
α→i(xi) = ω

∑
xαri

Ψα(xα)
∏

j∈α,j ̸=i

∏
β∋j,β ̸=α

mt
β→j(xj),

(4)
We repeat Eq. (4) until the messages converge to a
fixed point, though this is not guaranteed to converge.
If it converges, we use Eqs.(2) and (3) for the approx-
imations of the respective marginals of p(x).

This paper discusses the case where the compati-
bility functions are expressed by exponential families.
Let ϕi(xi) and ϕ⟨α⟩(xα) be statistics for a node vari-
able xi and a factor variable xα = (xj)j∈α, respec-
tively. We introduce a sufficient statistic ϕα by

ϕα(xα) = (ϕ⟨α⟩(xα), ϕi1(xi1), . . . , ϕidα (xidα )). (5)

For describing the LBP algorithm, we prepare the ex-
ponential families for each factor α and each node i
using the sufficient statistics ϕα and ϕi;

pθα(xα) = exp (⟨θα, ϕα(xα)⟩ − ψα(θα))

where θα = (θ⟨α⟩; θα:i1 , . . . , θα:idα ) is the natural pa-
rameter, and

pθi(xi) exp (⟨θi, ϕi(xi)⟩ − ψi(θi))

with a natural parameter θi. Note that ϕα for a factor
node includes the sufficient statistics for i ∈ α as its
components in addition to ϕ⟨α⟩. The mean parameter

ηα = (η⟨α⟩, ηα:i1 , . . . , ηα:idα ) =
∂ψα

∂θα
and ηi =

∂ψi

∂θi
serve

also as parametrization for the exponential families.
Assume the compatibility functions have the form

Ψα(xα) = exp
(
⟨θα, ϕα(xα)⟩

)
. (6)

The following assumptions are indispensable to our
analysis:
(A) For all i ∈ V and α ∈ F , the Hessian of ψi and
ψα, (i.e. the covariance matrix) are invertible.

(B) the exponential families are “closed” under
marginalization operation, i.e., for each pair of i ∈ α,∑
xαri

pθα(xα) is included in pθi .
It is not difficult to see that popular examples such as
multinomial and Gaussian distributions satisfy these
assumptions.

We rewrite the derivation of LBP from Bethe free
energy in terms of exponential families. Suppose
bα(xα) and bi(xi) have the form of exponential fami-
lies. Then, the Bethe free energy is written by

F (η) = −
∑
α∈F

⟨θ̄α, ηα⟩+
∑
α∈F

φα(ηα)+
∑
i∈V

(1−di)φi(ηi),

where φα and φi are the negative entropy function for
pα(xα) and pi(xi), respectively. The local consistency
can be expressed by

ηα:i = ηi (i ∈ α)

since this is equivalent to
∑
xα
ϕi(xi)bα(xα) =

ϕi(xi)bi(xi).
This paper uses the Lagrange duality to derive the

link to the graph zeta function. The Lagrange dual
function G of F under the constraints of local consis-
tency ηα:i = ηi (∀i ∈ α) is given by

G(λ) = min
η
F (η) +

∑
i∈V

∑
α∋i

λα:i(ηα:i − ηi).

By taking the derivative, we see that the minimum
is attained by θ⟨α⟩ = θ⟨α⟩, θα:i = θα:i − λα:i, and

θi =
1

1−di
∑
α∋i λα:i. Introduce µα:i by

µα→i := λα:i −
1

di − 1

∑
β∋i

λβ:i,

which has one-to-one correspondence with (λα:i) by
a linear map. In terms of (µα:i), the conditions of
minimum are given by θ⟨α⟩ = θ⟨α⟩, θα:i = θα:i +∑
β∈Ni\α µβ→i, and θi =

∑
β∋i µβ→i. Let h(η) denote

the constraint function hα:i(η) = ηα:i−ηi (i ∈ α), and
η∗(λ) be the point that attains the minimum. Then,

∂F

∂η
(η∗(λ)) + λT

∂h(η∗(λ))

∂η
= 0

for all λ (or µ). Since the Lagrange dual function is
given by G(λ) = F (η∗(λ)) + λTh(η∗(λ)), we have

∂G

∂λα:i
=

(∂F
∂η

+ λT
∂h

∂η

) ∂η

∂λα:i
+ hα:i(η∗(λ))

= η∗α:i(λ)− η∗i(λ) (7)

= Λα:i

(
θ⟨α⟩;

(
θα:j +

∑
β∈Nj\αµβ→j

)
j∈Nα

)
− Λi

(∑
β∈Ni

µβ→i

)
, (8)

- 193 -



Figure 2: Example of the relation e ⇀ e′.

where Λα:i(θα) = ηα:i(θα) and Λi(θi) = ηi(θi) are the
mean maps.

It is not difficult to see the fixed point method for
maximizing G(λ),

µt+1
α→i = Λ−1

i ◦ Λα:i
(
θ⟨α⟩;

(
θα:j +

∑
β∈Nj\αµ

t
β→j

)
j∈Nα

)
−
∑
β∈Ni\αµ

t
β→i, (9)

is equivalent to the BP update rule with mt
α→i(xi) =

exp(⟨µtα→i, ϕi(xi)⟩).

3. Graph zeta function

Ihara’s graph zeta function [2] has been extended
to arbitrary finite graphs ([10, 9]). This paper uses a
further extension to hypergraphs with matrix weights,
and connects it with the Hessian of the Bethe free
energy, Let H = (V, F ) be a hypergraph. As noted
before, it can be regarded as a bipartite graph. We
use a directed graph notation by orienting each edge
from a factor node α to a vertex node i. For each
edge e = (α → i), s(e) = α and t(e) = i denote
the starting factor and terminus vertex, respectively.
If two edges e, e′ ∈ E⃗ satisfy conditions t(e) ∈ s(e′)
and t(e) ̸= t(e′), this pair is denoted by e ⇀ e′. (See
Figure 2.) A sequence of directed edges (e1, . . . , ek)
is said to be a closed geodesic if el ⇀ el+1 for
l ∈ Z/kZ. For a closed geodesic c, we may form
the m-multiple cm by repeating c m-times. A closed
geodesic c is said to be prime, if it is not a multi-
ple of strictly shorter closed geodesic. For example, a
closed geodesic c = (e1, e2, e3, e1, e2, e3) is not prime,
while c = (e1, e2, e3, e4, e1, e2, e3) is prime. Two closed
geodesics are equivalent if one is obtained by cyclic
permutation of the other. An equivalence class of a
prime closed geodesic is called a prime cycle. The set
of prime cycles of H is denoted by PH .

We associate each edge e with the size re of a matrix
weight. The set of functions on E⃗ that take values on
Cre for each e ∈ E⃗ is denoted by X(E⃗). The set of
n1 × n2 complex matrices is denoted by M(n1, n2).

Assume that for each e′ ⇀ e, a matrix weight
ue′⇀e ∈ M(re, re′) is associated. the (matrix weight)
graph zeta function of H is defined by

ζH(u) :=
∏

p∈PH

1

det
(
I − π(p)

) ,

where π(p) := uek⇀e1 . . . ue2⇀e3ue1⇀e2 for p =
(e1, . . . , ek).

The definition is an analogue to the Euler product
formula of the Riemann zeta function which is repre-
sented by the product over all the prime numbers.
ζH(u) = 1 if H is a tree. For 1-cycle graph CN of

length N , the prime cycles are (e1, e2, . . . , eN ) and
(ēN , ēN−1, . . . , ē1). The zeta function is ζCN (u) =
det(Ire1 − ueN⇀e1 . . . ue2⇀e3ue1⇀e2)

−1 det(IrēN −
uē1⇀ēN . . . uēN−1⇀ēN−2uēN⇀ēN−1)

−1. Except for these
two cases, the number of prime cycles is infinite.

Theorem 1 Define a matrix M(u) with index set

X(E⃗) by

M(u)e,e′ =

{
ue′⇀e if e′ ⇀ e

0 otherwise.
(10)

Then, the following formula holds

ζG(u)
−1 = det(I −M(u)). (11)

For the proof, see [12]. This type of determinant for-
mula is well known in the context of graph zeta func-
tions (see e.g. [9], Theorem 3).

4. Bethe-Zeta formula

We have seen that the fixed point method for maxi-
mizing the dual function gives the LBP update. In this
section, we will show that the Hessian of the Bethe free
energy is related to the first derivative of the LBP up-
date rule.

First, we consider the derivative of LBP update rule.
From Eq.(9), we have

∂µt+1
α→i

∂µtβ→j

=
∂θi
∂ηi

∂ηα:i
∂θα

∂θα
∂µtβ→j

− (1− δαβ)δij .

Note that only
∂θα:j

∂µt
β→j

-component for α ̸= β in

∂θα
∂µt

β→j
is nonzero. Thus the first term is (1 −

δαβ)Varbi [ϕi]
−1Covbα [ϕi, ϕj ]. If the parameter satis-

fies local consistency, we see

∂µt+1
α→i

∂µtβ→j

=Mα→i,β→j(u),

where u = Varbi [ϕi]
−1Covbα [ϕj , ϕi].

On the other hand, it follows from Eq.(7) that

∂2G

∂λα:i∂µβ→j
=
∂ηα:i
∂θα

∂θα
∂µβ→j

− ∂ηi
∂θi

∂θi
∂µβ→j

.

With the same u as above, it is also easy to see

(I −M(u))α→i,β→j = −∂θi
∂ηi

∂2G

∂λα:i∂µβ→j
.
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Next, we derive a relation between the Hessian of F
and G. Recall ∂F∂η + λT ∂h∂η = 0 for any η = η∗(λ). By
differentiating w.r.t. λ and noting h is a linear map, we

have ∂2F
∂η∂η

∂η
∂λ + ∂η

∂λ = 0. Combining this with ∂2G
∂λ∂λ =

∂h
∂η

∂η
∂λ , we have

∂2G

∂λ∂λ
= −∂η

∂λ

∂2F

∂η∂η

∂η

∂λ
.

Based on the above facts, it is not difficult to derive
the following theorem.

Theorem 2 At any point η = {η⟨α⟩, ηi} that satisfies
local consistency, the following equality holds.

ζH(u)−1= det(I −M(u))

= det(∇2F )
∏
α∈F

det(Varbα [ϕα])
∏
i∈V

det(Varbi [ϕi])
1−di ,

where
uαi→j := Varbj [ϕj ]

−1Covbα [ϕj , ϕi] (12)

is an rj × ri matrix, and ∇2F is the Hessian matrix
with respect to the coordinate {η⟨α⟩, ηi}.

A complete proof by a different approach is given in
[12]. The above theorem tells that the determinant of
Hessian of the Bethe free energy is given by the Graph
zeta function at nonsymmetric correlation, which is
related to the derivative of LBP update rule.

5. Applications to LBP

There are various results derived from the Bethe-
Zeta formula. In this paper we focus only on convex-
ity and positive-definiteness, and defer other results to
[12] and a forthcoming paper.

The Bethe free energy function is not necessarily
convex though it is an approximation of the Gibbs free
energy function, which is convex. Non-convexity of the
Bethe free energy can lead to multiple fixed points. [7]
and [1] have derived sufficient conditions of the con-
vexity and shown that the Bethe free energy is convex
for trees and graphs with one cycle. In the following, L
denotes the locally consistent beliefs {bα(xα), bi(xi)},
and ∥ · ∥ the maximum singular value.

Theorem 3 (Positive definite region)
Let κ be the Perron-Frobenius eigen-
value of M, and define Lκ−1 :={
{bα(xα), bi(xi)} ∈ L | ∥Corbα [ϕi, ϕj ]∥ < κ−1∀α, i, j

}
.

Then, the Hessian ∇2F is positive definite on Lκ−1(I).

Roughly speaking, as the degrees of factors and ver-
tices increase, κ also increases and thus Lκ−1 shrinks.
The Perron-Frobenius eigenvalue is equal to 0 (resp.
1) if the hypergraph is a tree (resp. has a unique cy-
cle). This result suggests that LBP works better for
graphs of low degree.

The convexity of F depends solely on the given ex-
ponential family and the underlying hypergraph, be-
cause the Hessian ∇2F does not depend on the given
compatibility functions, Ψ = {Ψα}. For multinomial
case, [7] have shown that the Bethe free energy func-
tion is convex if the hypergraph has at most one cycle.
The following theorem extends the result. To show
(ii), we need to capture the effect of cycles on arbi-
trary hypergraphs.

Theorem 4 Let H be a connected hypergraph.
(i) If n(H) = 0 or 1, then F is convex on L.
(ii) Assuming the exponential family is either a multi-
nomial or Gaussian, then the converse of (i) holds.
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