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Abstract—We discuss state transitions in C∗-algebraic
quantum theory and reconsider state changes, usually
called the Schrödinger picture in quantum theory. We in-
troduce C∗-probability structure and transition probability
in C∗-algebraic quantum theory. By using them, we define
category of state transitions. Next, we explain the historical
background of this work related to quantum measurement
theory.

1. Introduction

We discuss state transitions in C∗-algebraic quantum the-
ory. We define the concept of transition probability in C∗-
algebraic quantum theory and explain the historical back-
ground of this work. The motivation for this paper is
twofold. One is to reconsider state changes in C∗-algebraic
quantum theory, usually called the Schrödinger picture in
quantum theory. The other is to connect it with the categor-
ical framework. To achieve these purposes, we introduce
the concept of C∗-probability structure. In the historical
background, we mention quantum measurement theory.

C∗-algebraic quantum theory is suitable for the descrip-
tion of quantum systems with infinite degrees of freedom
including quantum fields. In quantum systems with infinite
degrees of freedom, the nontrivial sector structure emerges,
which distinguishes the macroscopic aspect of the system.
A C∗-probability structure describes the probabilistic na-
ture of the system and specifies sectors involved in the fam-
ily of situations under consideration. Transition probabil-
ity is introduced in order to describe the transition between
C∗-probability structures. In the context of quantum mea-
surement theory, the concept of instrument describes the
transition between C∗-probability structures and has the ax-
iomatic characterization from the statistical point of view.
Typical, nontrivial examples of transition probability are
given by the measurement of discrete observables. By con-
trast, the introduction of instrument is motivated by the op-
erationally valid treatment of the measurement of continu-
ous observables. This is the reason why we actively treat
quantum measurement theory.
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2. C∗-algebraic quantum theory and transition proba-
bility

2.1. C∗-algebraic quantum theory

Axiom 1 (C∗-probability space [1]). All the statistical as-
pects of a physical system S are registered in a C∗-
probablity space (X, ω), where X is a C∗-algebra and ω is
a state onX. Observables of S are described by self-adjoint
elements of the C∗-algebra X. On the other hand, the state
ω on X statistically correponds to a physical situation (or
an experimental setting) of S.

This axiom declares that we describe a quantum system
in the language of noncommutative (quantum) probability
theory (see [2] for noncommutative probability theory, and
[3, 4] for operator algebras).

For every C∗-algebraX, SX denotes the state space ofX.
We use the weak∗ topology for the dual space X∗ of X. In
the weak∗ topology, the neighboorhoods of ω ∈ X∗ are in-
dexed by finite sets of elements X1, · · · , Xn ofX, and ε > 0:
Uω(X1, · · · , Xn, ε) = {φ ∈ X∗ | |φ(X j) − ω(X j)| < ε, j =
1, · · · , n}. The weak∗ topology for SX is the restriction of
that for X∗ to SX. We adopt the Borel structure of SX gen-
erated by open sets in the weak∗ topology. B(SX) denotes
the Borel sets of SX.

The second dual X∗∗ := (X∗)∗ of X is a W∗-algebra,
a C∗-algebra which is a dual space of a Banach space.
The isometric embedding ·̂ of X into X∗∗ is defined by
⟨X̂, ρ⟩ = ρ(X) for all ρ ∈ X∗. The following axiom is usu-
ally assumed.

Axiom 2 (Born statistical formula). When an observable
A of X is precisely measured in a state ω, the probability
Pr{A ∈ ∆∥ω} that the spectrum of A belonging to ∆ emerge
is given by Pr{A ∈ ∆∥ω} = ⟨E Â(∆), ω⟩.

2.2. C∗-probability structure

Let X be a C∗-algebra and (π,H) a representation of
X. B(H) denotes the set of bounded linear operators on
H . A linear functional ω on X is said to be π-normal
if there exists a trace-class operator ρ on H such that
ω(X) = Tr[π(X)ρ] for all X ∈ X. V(π) denotes the set of π-
normal linear functionals on X. LetM be a von Neumann
algebra on a Hilbert space K . Z(M) denotes the center of
M. M∗ denotes the set of ultraweakly continuous linear
functionals onM.
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A linear subspace V of X∗ is said to be central if there
exists a central projection C of X∗∗, i.e., C ∈ Z(X∗∗), such
thatV = CX∗ [5]. The dual spaceV∗ of a central subspace
V(= CX∗) is a W∗-algebra (isomorphic to CX∗∗). A central
subspace is said to be σ-finite if its dual is σ-finite.

Example 1 (See [4, Chapter III] for example). (1) Let X
be a C∗-algebra and (π,H) a representation of X. There
exists a central projection C(π) of X∗∗ such that

V(π) = C(π)X∗ = {C(π)φ | φ ∈ X∗} = {φ ∈ X∗ | C(π)φ = φ}.
(1)

(2) Let M be a von Neumann algebra on a Hilbert space
H . There exists a central projection C of M∗∗ such that
M∗ = CM∗. In particular, B(H)∗ is a central subspace of
B(H)∗.

Definition 1 (C∗-probability structure). a = (Xa,Va) is
called a C∗-probability structure if it is the pair of a C∗-
algebra Xa and a central subspace Va of X∗a. C∗-PS
denotes the class of C∗-probability structures. For each
a = (Xa,Va) ∈ C∗-PS, we put Sa = SXa ∩Va.

Here we adopt the next axiom, a sequel to Axiom 1.

Axiom 3. A quantum system in physical situations (or ex-
perimental settings) contained in a fixed category is statis-
tically specified by a C∗-probability structure.

2.3. Definition

We shall define the concept of transition probability by
using C∗-probability structure.

Definition 2 (Transition probability). Let a, b ∈ C∗-PS. A
map P(· ← ·) : B(SXb ) × Sa → [0, 1] is called a transition
probability for (a, b) if it satisfies the following two condi-
tions:
(1) For every ω ∈ Sa, P(· ← ω) is a probability measure
on SXb .
(2) For any pair ω ∈ Sa and ∆ ∈ B(SXb ) such that
P(∆ ← ω) , 0, ω(P,∆) ∈ Sb, where, for any pair ω ∈ Sa

and ∆ ∈ B(SXb ) such that P(∆← ω) , 0, we define a state
ω(P,∆) on Xb by

ω(P,∆)(X) =
∫
∆

ρ(X)
dP(ρ← ω)
P(∆← ω)

, X ∈ Xb. (2)

When a = b, a transition probability for (a, b) is also
called a transition probability for a for simplicity. For every
one element set {φ}, P({φ} ← ω) is denoted by P(φ← ω).

Example 2 (Deterministic transition). (1) Let aX =

(X,X∗) ∈ C∗-PS and α be a ∗-automorphism of X. A tran-
sition probability P(α) for aX is defined by P(α)(∆ ← ω) =
δω◦α(∆).
(2) Let a, b ∈ C∗-PS, and T : Va → Vb a unital posi-
tive linear map. A transition probability P(T ) for (a, b) is
defined by P(T )(∆ ← ω) = δTω(∆) for all ω ∈ Sa and
∆ ∈ B(SXb ).

2.4. Composition of transition probabilities

Definition 3. A transition probability P for (a, b) is said
to be discrete if, for every ω ∈ Sa, P(· ← ω) is a discrete
probability measure on SXb .

Definition 4 (Composition). Let a, b, c ∈ C∗-PS, and Q
and P be transition probabilities for (b, c) and (a, b), re-
spectively. Suppose that P is discrete. The product Q ∗ P of
Q and P is defined as follows: for every ω ∈ Sa,

(Q ∗ P)(Γ × ∆|ω) =
∑

ρ∈∆∩S P,ω

Q(Γ← ρ) P(ρ← ω) (3)

for all Γ ∈ B(SXc ) and ∆ ∈ B(SXb ).

To extend the product into the case where P is not dis-
crete, we use Riesz-Markov-Kakutani theorem stating the
one-to-one correspondence between probability measures
on a compact Hausdorff space S and states on the set C(S )
of continuous functions on S .

Definition 5 (Composition; continued). Let a, b, c ∈

C∗-PS, and Q and P be transition probabilities for (b, c)
and (a, b), respectively. Q and P are composable if the fol-
lowing two conditions hold:
(1) For every ω ∈ Sa and net {Pα}α∈A of discrete transi-
tion probabilities for (a, b) convergent to P, the net {Q ∗
Pα(·|ω)}α∈A of states on C(SXc × SXb ) weakly converges to
a state on C(SXc × SXb ).
(2) For every ω ∈ Sa, the limit of the net {Q ∗ Pα(·|ω)}α∈A

is independent of the choice of the net {Pα}α∈A of discrete
transition probabilities for (a, b) convergent to P. Then the
limit is denoted by Q ∗ P.

When Q and P are composable, we define a transition
probability Q◁P for (a, c), called the composition of Q and
P, by (Q ◁ P)(Γ← ω) = (Q ∗ P)(Γ × SXb |ω) for all ω ∈ Sa

and Γ ∈ B(SXc ).

We use this composition to define category of state tran-
sitions: Objects and arrows are C∗-probability structures
and transition probabilities, respectively. The latter must
satisfy the associative law of the composition of transition
probabilities.

Definition 6 (Category of state transitions). C is a category
of state transitions if it has

Objects C∗-probability structures a = (Xa,Va), and

Arrows b← a : f with transition probability P f for (a, b).
For every object a, the identity arrow a ← a : 1a

of a has a transition probability P1a for a such that
P1a (∆← ω) = δω(∆) for all ω ∈ Sa and ∆ ∈ B(SXa ).

The composition of arrows involves that of transition prob-
abilities and satisfies the associative law.

– 70 –



3. Historical remarks and instrument

We assume that H is a separable Hilbert space. We
do not distinguish density operators ρ on H and normal
states ρ̃ on B(H) via the isomorphism ·̃ : T(H) → B(H)∗
such that ρ̃(X) = Tr[ρX] for all X ∈ B(H). We put
aH = (B(H),T(H)). By using transition probabilities,
state transitions by the measurement of discrete observ-
ables in the traditional context are given by the following
axiom.

Postulate 1. Let A =
∑

a∈R aEA({a}) be a discrete ob-
servable of B(H) to be measured. When a density oper-
ator ρ is prepared, the state ρ{A=a} after the measurement
is uniquely determined for each a ∈ S p(A; ρ) = {a ∈
R | Tr[EA({a})ρ] > 0}, and the transition probability Pr
for aH is given by

Pr(∆← ρ) =
∑

a∈S p(A;ρ)

Tr[EA({a})ρ]δρ{A=a} (∆). (4)

In particular, for every a ∈ S p(A; ρ),

Pr(ρ{A=a} ← ρ) = Tr[EA({a})ρ]. (5)

Postulate 2 (von Neumann-Lüders projection postulate).
For each a ∈ S p(A; ρ), ρ{A=a} in Postulate 1 is given by

ρ{A=a} =
EA({a})ρEA({a})

Tr[EA({a})ρ]
. (6)

J. von Neumann [6] considered this postulate only for
non-degenerate observables, and Lüders [7] generalized it
for the degenerate case. Dirac’s transition probability [8]
motivated the above postulates. Under the above postu-
lates, we have the following lemma.

Lemma 1. When ρ is a prepared state and values of A
not contained in ∆ are ignored, the state ρ{A∈∆} after the
measurement of A is given by∑

a∈∆ EA({a})ρEA({a})
Tr[ρEA(∆)]

=

(∑
a∈R EA({a})ρEA({a})

)
· EA(∆)

Tr[ρEA(∆)]
.

For nondegenerate discrete observables, von Neumann
[6] derived Postulate 2 from

Postulate 3 (Repeatability hypothesis [6, 9]). If an observ-
able A is measured twice in succesion in the object system,
then we get the same value each time.

From Postulates 1 and 3, we have Tr[EA({b})ρ{A=a}] =
δab for all a ∈ S p(A; ρ) and b ∈ R. Under Postulate 1,
Postulate 2 implies Postulate 3.

Nakamura and Umegaki [10] pointed out that the map

EA : B(H) ∋ X 7→
∑
a∈R

EA({a})XEA({a}) ∈ {A}′ (7)

is nothing but the conditional expectation of B(H) onto the
von Neumann algebra {A}′ = {B ∈ B(H) | AB = BA},

and conjectured that the same argument holds for continu-
ous observables. Arveson [11] proved that their conjecture
does not hold. Following those investigations, Davies and
Lewis [12] introduced the notion of instrument which de-
scribes general state changes caused by the measurement
in order to formulate measurement theory not based on the
repeatability hypothesis (Postulate 3).

Let V1 and V2 be central subspaces of the dual spaces
of C∗-algebrasX1 andX2, respectively. P(V1,V2) denotes
the set of positive linear maps of V1 into V2. Also, ⟨·, ·⟩
denotes the pairing ofV∗1 andV1.

Definition 7 (instrument). Let a, b ∈ C∗-PS and (S ,F ) a
measurable space. I is called an instrument for (a, b, S ) if
it satisfies the following three conditions:
(1) I is a map of F into P(Va,Vb).
(2) ⟨1,I(S )ρ⟩ = ⟨1, ρ⟩ for all ρ ∈ Va.
(3) For every ρ ∈ Va, M ∈ V∗b and mutually disjoint se-
quence {∆ j} j∈N of F , ⟨M,I(∪ j∆ j)ρ⟩ =

∑∞
j=1⟨M,I(∆ j)ρ⟩.

An instrument I for (a, b, S ) is said to be completely posi-
tive (CP) if I(∆) is completely positive for all ∆ ∈ F .

Davies and Lewis [12] defined instrument more ab-
stractly. Their definition uses “state space” and includes
our definition in some sense. However, we cannot reach
our definition from their one without the understanding for
sector theory [13, 14]. The theory of CP instrument was de-
veloped in [15, 16] in the von Neumann algebraic setting.
The theory in the setting of the paper is a future task.

We shall define category of instruments. As defined be-
low, instruments become arrows in the category.

Definition 8 (Category of instruments). C is a category of
state transitions if it has

Objects C∗-probability structures a = (Xa,Va), and

Arrows b← a : I is an instrument I for (a, b,Rd), where
d = 0, 1, 2, · · · .

The composition of arrows is given by the product of in-
struments (see [12] for the definition of the product).

4. Central instrument

In the C∗-algebraic setting, there exists a nontrivial ex-
ample of instrument, called a central instrument. It gives
the simultaneous central decomposition of states belong-
ing to the given central subspace. Thus the unification of
sector theory and quantum measurement theory is achieved
by the use of central instruments.

Let a ∈ C∗-PS, (S ,F ) be a measurable space, and
C : F → Z(V∗a) a projection valued measure (PVM). For
every M1,M2 ∈ V

∗
a and ρ ∈ Va, we define M1ρM2 ∈ Va

by ⟨M,M1ρM2⟩ = ⟨M2MM1, ρ⟩ for all M ∈ V∗a. An instru-
ment IC for (a, S ) is defined by IC(∆)ρ = C(∆)ρ for all
ρ ∈ Va and ∆ ∈ F .
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Theorem 2 ([5, Theorem 10]). I = IC defined above sat-
isfies the following conditions:
(1) I(S )ρ = ρ for all ρ ∈ Va.
(2) It is repeatable, i.e., it satisfies I(∆)I(Γ) = I(∆∩Γ) for
all ∆,Γ ∈ F .
(3) For every ρ ∈ Sa and ∆ ∈ F , I(∆)ρ and I(∆c)ρ are
mutually disjoint.
(4) For every ∆ ∈ F , I(∆) is V∗a-bimodule map, i.e., for
every ∆ ∈ F , ρ ∈ Va and M1,M2 ∈ V

∗
a,

I(∆)(M1ρM2) = M1(I(∆)ρ)M2. (8)

Conversely, if an instrument I for (a, S ) satisfies the con-
ditions (2) and (4), then there exists a spectral measure
C : F → Z(V∗a) such that I = IC .

An instrument I for (a, S ) is said to be subcentral if it
satisfies the conditions (2) and (4) in Theorem 2. An instru-
ment I for (a, S ) is said to be central if it is the maximum
in the set of subcentral instruments defined on a, where the
maximum is due to the preorder ≺ on instruments defined
as follows: For instruments I1, I2 for (a, S 1) and (a, S 2),
respectively, I1 ≺ I2 if I1(F1) ⊂ I2(F2) for all ρ ∈ Sa,
where Ii(Fi), i = 1, 2, is the subset of P(Va,Va) defined
by Ii(Fi) = {Ii(∆i) | ∆i ∈ Fi}.

Theorem 3 ([5, Theorem 11]). IC is central if and only if
the abelian von Neumann algebra generated by {C(∆) | ∆ ∈
F } is isomorphic toZ(V∗a).

5. Discussion and perspective

The content of the paper can be summarized as the fol-
lowing axiom.

Axiom 4. A quantum system is specified by a category;
its objects are C∗-probability structures and its arrows de-
scribe transitions between them. Category of state transi-
tions and that of instruments are such examples.

The paper [17] by Saigo et al. motivates this work and
suggests further development. For example, we do not treat
the composite system related to the complete positivity of
instrument in the paper yet. The concept of transition prob-
ability has room for development. We believe that it is
important to establish the formulation of category of state
transitions applicable to quantum field theory in the future.
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