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Abstract—In this paper, a self-organized neural net-
work consisting of neurons with heterogeneous dynam-
ics is proposed. The heterogeneity is introduced into the
network by choosing the key parameter from a uniform
distribution covering a wide variety of neuronal behavior.
In particular, the synaptic matrix evolves according to the
spike-timing dependent plasticity (STDP) mechanism and
finally leads to synchronous spiking and a sparse connec-
tion. We argue that the self-emergent topology with active
individuals having strong out-degree synapses essentially
reflects the competition of different neurons and encodes
the heterogeneity. And in order to test the efficiency of this
self-organized network in signal processing, we have made
comparisons to three other networks of different topologies
in terms of coherence resonance (CR) and stochastic res-
onance (SR), which have been analyzed in various neural
networks recently. It is shown that the network obtained
from STDP learning can enhance the CR and SR of the en-
tire network, indicating its high efficiency in information
processing.

1. Introduction

In computational neuroscience, neural networks of var-
ious topologies, such as globally coupled networks [1],
small-world networks [2] and scale-free networks [3], have
been investigated for the performance in associative mem-
ory, stochastic resonance and so on. Specifically, instead
of a prior imposition of a specific topology, it is more rea-
sonable to consider self-organized neural networks, which
have been broadly studied in [4, 5, 6, 7]. The self-
organization is usually managed through spike-timing de-
pendent plasticity (STDP), which is a form of long-term
synaptic plasticity both experimentally observed [8] and
theoretically studied [9, 10]. According to the Hebbian
Rule [11] synapses increase their efficacy if the synapse
persistently causes the postsynaptic target neuron to gener-
ate action potentials. While recent experiments shows that
synapses increase their efficacy if the presynaptic neuron
is activated momentarily before the postsynaptic neuron is
activated. Or synapses in which the pre-synaptic input fired
before the postsynaptic cell get stronger; in the inverse sit-
uation, the synapse gets weaker. Recent findings of STDP
have triggered the interest in the potential roles of spike
timing in processing and storage of information in neural
circuits.

However, most network models in previous work did not
take into account the heterogeneity of neurons that ubiqui-
tously exist in real neural networks. For example, neurons
located near the canard region exhibit complex behaviors
in the presence of noise [12, 13, 14], where they are more
sensitive to external signals and thus enhance information
transfer in biological systems. Neurons having different
dynamical activities will lead to the network heterogene-
ity, which can trigger competitions between individuals and
play an important role in the coherence resonance [15] and
phase synchronization [16]. In fact, the evolution of the
synaptic connectivity or the network structure is closely re-
lated to the intrinsic heterogeneous dynamics of neurons.

In this paper we derive the connection of our networks
through STDP over a set of heterogenous neurons. The
heterogeneity is introduced into the network by choosing
the key parameter from a uniform distribution covering a
wide variety of neuronal behavior. After the reorganization,
the active cells tend to have high out-degree synapses and
low in-degree synapses, while the inactive ones are just the
opposite. This self-emergent topology essentially reflects
the relationships of influence and dependence among the
heterogeneous neurons and thus achieves energy consump-
tion. In order to test the efficiency of this self-organized
network in signal processing, we have made comparisons
to three other networks of different topologies in terms of
coherence resonance (CR) and stochastic resonance (SR),
which have been analyzed in various neural networks re-
cently [14, 15, 17]. We show that the network obtained
from STDP learning achieves a higher efficiency in infor-
mation transfer.

2. Description of the Network Model

The network used in this paper is composed of N
FitzHugh- Nagumo (FHN) neuron models [18] described
by



















εV̇i = Vi − V3
i /3 −Wi + Iex + I syn

i
Ẇi = Vi + a − biWi + Dξi
I syn
i = −

∑N
1( j,i) gi js j(Vi − Vsyn)

(1)

where i = 1, 2, ...,N. a, bi, and ε are dimensionless pa-
rameters with ε small enough (ε ≪ 1) to make membrane
potential Vi a fast variable, compared to the slow recovery
variable Wi. ξi is the independent Gaussian noise with zero
mean and intensity D that represents the noisy background,
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and Iex stands for the externally applied current. I syn
i is the

total synaptic current through neuron i. The synaptic vari-
able s j is governed by ṡ j = α(V j)(1 − s j) − βs j, where
α(V j) = α0/(1+e−V j/Vshp ). Here the synaptic recovery func-
tion α(V j) can be taken as the Heaviside function. When
the presynaptic cell is in the silent state V j < 0, s j can be
reduced to ṡ j = −βs j; otherwise s j jumps quickly to 1 and
acts on the postsynaptic cells. The synaptic conductance
gi j from the jth neuron to the ith neuron will be updated
through STDP shown later. Note that in this paper both
the excitatory and inhibitory synapses are considered. The
type of synapse is determined by the synaptic reversal po-
tential Vsyn, which we set to be 0 and −2 for excitatory and
inhibitory synapse, respectively.

In this model, b is a critical parameter that can signifi-
cantly influence the dynamics of the system. For a single
neuron free from noise, Andronov-Hopf bifurcation occurs
at b0 = 0.45. For b > b0, the neuron is at the rest state
and is excitable; for b < b0, the system has a stable pe-
riodic solution generating periodic spikes. Between these
two states, there exists an intermediate behavior, known as
canard solution. In a small vicinity of b = b0, there are
small oscillations near the fixed point before the sudden el-
evation of the oscillatory amplitude. In our system, bi is
uniformly distributed in [0.45, 0.75]. Hence each neuron
when uncoupled has different activity when subject to ex-
ternal input and noisy background, and neurons with b lo-
cated near the bifurcation point are prone to fire in a much
higher frequency than the others.

According to the experimental report on STDP [8], there
is no obvious modifications of excitatory synapses onto in-
hibitory postsynaptic cells after their repetitive and relative
activities. Hence, we set inhibitory synaptic conductance
and excitatory-to-inhibitory synaptic conductance to be a
constant. The remaining excitatory synapses are updated
by the STDP modification function F, which selectively
strengthen the pre-to-post synapses with relatively shorter
latencies or stronger mutual correlations, while weakening
the remaining synapses [4]. The synaptic conductance is
updated by

∆gi j = gi jF(∆t) (2)

F(∆t) =
{

A+ exp(−∆t/τ+) if ∆t > 0
−A− exp(∆t/τ−) if ∆t < 0

(3)

where ∆t = ti − t j, F(∆t) = 0 if ∆t = 0. τ+ and τ− deter-
mine the temporal window for synaptic modification. A+
and A− determine the maximum amounts of synaptic mod-
ification. Experimental results suggest that A−τ− > A+τ+
which ensures the overall weakening of synapses. Here,
we set τ− = τ+ = 2, A+ = 0.05 and A−/A+ = 1.05 as
used in [4]. Only the excitatory-to-excitatory synapses are
modified by this learning rule and are restricted to the range
[0, gmax], where gmax is the limiting value. Other parame-
ters used in this paper are a = 0.7, ε = 0.08, α0 = 2, β =
1,Vshp = 0.05, gmax = 0.1. The other parameters are given
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Figure 1: Evolution of the network structure.(a) Percentage
of three levels of synapses: gi j ≥ 0.9gmax, gi j ≤ 0.1gmax

and the others; (b) Histogram of the synaptic matrix G; (c)
Distribution of the synaptic matrix. Synapses gi j from cell
j to cell i with b j and bi respectively are plotted. The black
dots are the strong synapses satisfying gi j ≥ 0.9gmax, the
blue circles are the weak synapses satisfying gi j ≤ 0.1gmax

and the red plus signs are intermediate values of synapses.
(d) The average firing rate of all cells.

in each case. Numerical integrations of the system is done
by the explicit Euler-Maruyama algorithm [19], with a time
step 0.005.

3. Main Results

We consider a network of N = 60, which consists of 50
excitatory and 10 inhibitory neurons. All the neurons are
bidirectionally and globally coupled at the beginning, and
we assign gmax/2 and 3gmax/2 to excitatory and inhibitory
synapses, respectively. The whole network is subject to an
external current (Iex = 0.1) and noisy background (D =
0.06) as a learning environment.

We now check how the network structure evolves during
the learning process. As is shown in Fig. 1, after compe-
tition, most of the synaptic connections converge to either
0 or the maximum gmax from the initial value gmax/2 (see
Fig. 1(a)). This structure becomes stable after about 6000s.
The synaptic connection finally becomes sparse with about
50% being 0 and 20% being gmax (Fig. 1 (b)). Fig. 1 (c)
gives a clear picture of the active-neuron-dominant synap-
tic connections in this network, where strong connections
are mainly distributed to the synapses from active neurons
(those with small values of bi) to inactive ones (those with
large values of bi). Actually, the firing rate of the whole
network plateaus after about 1500s when the number of
synapses with gi j ≥ 0.9gmax equals to that of the synapses
with gi j ≤ 0.1gmax (Fig. 1(d)). So the following update of
the synapses is in fact an optimizing procedure that further
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weakens those unnecessary connections.

The reason for generating such a special structure is that,
under the same learning environment, active neurons can
fire with a high frequency and thus are more likely to act
as the pre-cells whose out-degree and in-degree synapses
are then strengthened and weakened by STDP respectively.
Such synapse distribution renders the active cells a pow-
erful drive to the inactive ones. Hence, we can see that
through the STDP learning process, the sensitive dynam-
ics of those active neurons are fully exploited to trigger the
whole network to fire synchronously, which becomes more
active and sensitive than the original network. It should be
noted that when the driving of external applied signal is re-
moved, the sustained synchronous firing after learning will
terminate and the whole network returns the normal rest
state.

Here if the initial excitatory synapses are set to be gmax

or randomly distributed in [0, gmax], similar results can be
obtained but need longer convergence time. And to ensure
that our results do not depend on the specific realization
of the uniform distribution of parameter bi among neurons,
we have performed the learning process over several differ-
ent realizations, and find no significant changes of the final
network topology.

In the following part, we investigate the efficiency of
the self-organized network (SON) obtained via STDP in
signal processing by comparing its performance on CR
and SR with three other networks, i.e., the network with
the same synaptic distribution as SON but shuffled (RNS),
the random network with synapses uniformly distributed
in [0, gmax] (RNG), and the globally coupled network with
constant synapses gmax/2 (CN). All these four types of net-
work are composed of heterogeneous cells that are bidirec-
tionally coupled and have the same mean value of synapses
being about gmax/2. Ten trials are conducted for each of
them.

Coherence Resonance (CR) is a noise-induced effect
which describes the occurrence and optimization of peri-
odic oscillatory behavior due to noise perturbations [12].
With an intermediate noise intensity, system can behave the
most regular periodic oscillations. We take S and Tmean

as the coherence factors of the firing events. They are

defined as S = 1
N

∑N
i=1 S i, where S i = 〈T i

k〉t/

√

Var(T i
k).

Tmean =
1
N

∑N
i=1〈T

i
k〉t. T i

k = τ
i
k+1 − τ

i
k is the pulse inter-

nal, where τi
k is the time of the kth firing of the ith cell.

〈·〉t denotes average over time. S describes the degree of
spiking regularity in neural systems. Tmean is the average
inter-spike interval (ISI). Here, Iex = 0 and all the cells are
in subthreshold region in the absence of noise. Fig. 2 (a)
shows that the optimal regularity occurs when noise inten-
sity D equals about 0.08. The corresponding S in SON is
much larger than the other networks, indicating the high
coherent output of SON. The flat curve of Tmean near the
optimal case (see Fig. 2 (b)) reflects that the regular inter-
spike intervals in SON can exist in a relatively wide range
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Figure 2: Comparisons of four types of neural networks
on CR (a) (b) and SR (c) (d). (a) (b) S and Tmean versus
noise intensity D respectively; (c) Q versus noise intensity
D, where B1 = 0.75; (d) The influence of inactive cells on
SR. Qmax is the maximum of Q. Only cells with parameter
bi ∈ [0.45, B1] are subject to external signal.

of noise intensity. While due to the inefficient connectivity,
the other networks display unsynchronized and inactive ac-
tivities, causing the small S and large Tmean (ISI). This is
because, under the driving of the same noise intensity, neu-
rons with different levels of excitability show diverse fir-
ing patterns. Only the self-organized network which has
a reasonably selected synapse distribution can couple the
neurons efficiently and generate regular spiking.

Stochastic resonance (SR) describes the cooperative ef-
fect between a weak signal and noise in a nonlinear system,
leading to an enhanced response to the periodic force. The
neuron model is an excitable system which can potentially
exhibit SR [20]. To evaluate SR, we set the periodic input
to be Iex = B sin(ωt), with B = 0.1 andω = 0.3. The ampli-
tude of the input signal is small enough to ensure that there
are no spiking for all the neurons in the absence of noise.
Also, the frequencyω is much slower than that of neuron’s
inherent periodic spiking.

The Fourier coefficient Q is used to evaluate
the response of output frequency to the input fre-

quency. It is defined as [21]: Q =

√

Q2
sin + Q2

cos,

where Qsin =
ω

2πn

∫ 2πn/ω

0
2Vi(t) sin(ωt)dt, and

Qcos =
ω

2πn

∫ 2πn/ω
0

2Vi(t) cos(ωt)dt. n is the number
of periods 2π/ω covered by the integration time. The
quantity Q measures the component from the Fourier
spectrum at the signal frequency ω. The maximum of
Q shows the best phase synchronization between input
signal and output firing. Again, SON exhibits greater SR
than the other cases (Fig. 2 (c)(d)). In the three other
networks which have inefficient connections, active cells
fire much more frequently than the periodic driven signal
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while the inactive ones may be even at the rest state. The
active-cell-dominant connection in SON regulates well
the network activity and eventually achieves a balanced
energy distribution among neurons. Moreover, in order to
investigate the importance of active cells, only cells with
bi ∈ [0.45, B1], where 0.47 ≤ B1 ≤ 0.75, are subject to the
periodic input. From Fig. 2 (d) we can see that whether
the inactive cells are subject to external signal or not has
little effect on SR. This indicates that the contributions
of inactive cells to SR are negligible. While the active
cells are critical and play a vital role to trigger the whole
network response with external signal.

4. Conclusion

In this paper, a new type of self-organized neural net-
work with heterogeneous neurons is obtained via STDP
learning. Different neurons’ internal dynamics are clearly
encoded in the network structure after learning. In the
STDP learning process, the synaptic strengths of the net-
work are renewed by increasing the influence of active cells
over the others and the dependence of inactive cells on the
active cells. It makes the most of the internal dynamical
properties of different neurons to synchronize and renders
the whole network more sensitive to weak input. This ef-
fect is strongly reflected by its good performance on CR
and SR. Therefore, we believe that this self-organized het-
erogeneous neural network is much efficient for signal pro-
cessing.
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