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Abstract—In this paper, we investigate the influence
of time scales to the evolution of extortioners with coop-
erators and defectors in homogeneous random networks.
When letting strategies’ lifetime is related to their fitness,
the extortioners are easy to invade the clusters of defec-
tors, and form stable relationship with cooperative neigh-
bors. Therefore, introducing the time scale factor into
game dynamics promotes the stable existence of extortion-
ers and furthermore enhances the cooperation level in ho-
mogeneous random networks. With the network becomes
denser, The frequency of cooperators will decrease mono-
tonically, which is due to the fact that cooperators are easy
to meet defectors and be exploited by them.

1. Introduction

Cooperation phenomenon is ubiquitous in both the na-
ture and human society. How to understanding the emer-
gence of cooperation under the assumption of individual’s
selfishness remains a riddle and attracts scientists from
many different fields, who usually employ game theory as
a theoretical framework [1]. The Prisoner Dilemma(PD)
is one of the most famous game models which receives the
most attention as a metaphor of cooperation between un-
related individuals. In the PD game, two players interact
simultaneously with each other by choosing cooperation or
defection as a strategy. A Cooperator will pay a cost c to
let her opponent receive a benefit b, whereas a defector will
pay nothing. Therefore, two cooperators can receive the
reward R = b − c and two defectors will obtain the pun-
ishment P = 0. When a cooperator meets a defector, the
former will obtain the sucker’s payoff S = −c and the latter
will get the temptation T = b. Under this conditions, it is
always better to defect regardless of the opponent behav-
ior, resulting in the outcome of mutual defection, although
mutual cooperation yields the highest collective payoff.

Recently, Press and Dyson discovered a class of strate-
gies called zero-determinant(ZD) strategies, which allow a
player to enforce a linear relation between her own payoff
and the opponent payoff unilaterally in the PD game [2].
A subset of ZD strategies called extortion strategies ensure
the extortioner X can receive a payoff surplus exceeding
the surplus of her co-player Y by a fix percentage. How-
ever, in the realm of evolutionary game, where players are

set to update their own strategies by imitating the neighbors
whose strategies perform better, extortion strategies spread
rapidly and, as mutual extortion resulting in zero yield, and
the evolution of extortioners in well-mixed populations are
deeply investigated [3, 4, 5, 6, 7].

The networked reciprocity is an efficient mechanism to
support the evolution of cooperation in population [8]. Pre-
vious investigations showed that cooperators can form tight
clusters to defend the invasion of defectors in regular or
complex networks if strategies update in terms of imitation
dynamics [9, 10, 11]. Many important factors, such as de-
gree heterogeneity [10, 11], individual aspiration [12], etc.,
play key influence on the evolution and maintenance of co-
operation in networks. Szolnoki and Perc [13] recently
showed that if the strategy updating is guided by the my-
opic best response rule, the extortion strategy can stably ex-
ist with other strategies in structured population, which fur-
thermore promotes the emergence of cooperation. Through
the aspiration-driven strategy updating rule [12], Wu and
Rong [14] showed that the involvement of extortioners fa-
cilitates the boom of cooperators in the square lattice.

There are two time scales in game dynamics, i.e., the in-
teraction time scale which depicts how frequently individ-
uals play games with each other, and the strategy-selection
time scale which characterizes how frequently they up-
date their strategies. The two processes are interdepen-
dent, and many previous investigations consider that they
have the same time scale, i.e., every individual immedi-
ately updates her behavior after one round of game. How-
ever, the evolution of cooperation changes if individuals in
well-mixed or structured population own nonidentical time
scales [15, 16]. Especially, by investigating the evolution
of extortioners in well-mixed population, Hilbe et al. [4]
showed that the extortion strategy can also exist in two dis-
tinct well-mixed populations if the two populations evolve
in different time scales, i.e., extortioners can be dominant
in the population with a slow time scale and exploit the in-
dividuals in another population with a fast time scale. Rong
et al. [15, 16] also previously studied the coevolution of
time scale and cooperation in networked PD game, and
found that the cooperation can be promoted if permitting
an individual with high payoff to hold onto her successful
strategy for a longer time. This motivates us to investi-
gate how the extortion strategy evolves in networked sys-
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tems where individuals can adaptively adjust their strategy-
selection time scales.

2. Models

Consider an individual X uses a memory-one strategy
pX = (pR, pS , pT , pP), where pi is the conditional probabil-
ity to cooperate after receiving the outcome i ∈ (R, S ,T, P)
in the previous round. If an individual X adopts the zero-
determinant strategy p̃ = pX−e12 = ϕ[(SX−l1)−χ(SY−l1)],
she can enforces an linear relation between her long-term
payoff AX with her opponent Y’s payoff AY , i.e., AX − l =
χ(AY − l), regardless of any strategy pY that Y adopted
[5, 6]. Here, SX = (R, S , T, P)(SY = (R,T, S , P)) is the
payoff vector of individual X (Y), and the vector e12 =

(1, 1, 0, 0) and 1 = (1, 1, 1, 1). The parameter ϕ > 0 should
be sufficiently small so that there exist the feasible strate-
gies. The extortion factor χ = 1 implies X lets she owns
the same long-term payoff with her opponent’s, which cor-
responds to the kind of fairness strategy. The famous Tif-
for-Tat(TFT) strategy is an example of fairness strategy.
l ∈ (P,R) is the baseline payoff that implies the benefit of
the two individuals if one adopts the fairness strategy with
χ = 1. If l = P and χ > 1, this is the extortion strategy (Eχ)
where the individual X with such strategy can ensure that
her own surplus is the χ-times of the Ys.

In this paper, we focus on the evolution of extortion strat-
egy with unconditional cooperation (C) / unconditional de-
fection (D) strategy as well as in the donation game (a kind
of Prisoner’s dilemma game). According to Ref. [4], the
payoff matrix among extortion(Eχ), unconditional cooper-
ation (C) and unconditional defection (D) strategies is:

Eχ C D
Eχ 0 (b2−c2)χ

bχ+c 0
C b2−c2

bχ+c b − c −c
D 0 b 0

. (1)

We consider each individual x locates on a node in a net-
work, who plays the donation game with her immediate
neighbors and obtain her accumulate payoff Px in terms of
Eq.(1). In social and biological systems, individuals tend
to adopt the behavior with high fitness, which can be char-
acterized by her payoff. For every round t, each individual i
obtains the accumulated payoff Pi via playing the donation
game with her neighbors. With probability pi(t), which will
be defined later, an individual i will change her behavior
from the current strategy si to another randomly selected
strategy s′i with probability q in terms of the myopic best
response rule [13], i.e.,

q(s′i → si) =
1

1 + exp[( fi − f ′i )/κ]
, (2)

where the fitness fi corresponding to strategy si is reaped
by fi = Pi/ki, and ki is the degree of individual i. And f ′i
is the fitness of the same individual adopting strategy s′i to
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Figure 1: Evolution of cooperation, extortion and defection
strategies versus (a) the benefit factor b with χ = 5 and (b)
the extortion factor χ with b=1.2 in well-mixed population
with N=10000.

play game within the same neighborhood. The parameter
κ represents the noise of environment and is set as 0.05
following the previous paper [13].

In this paper, we consider the strategy-selection time
scale to be longer than the interaction time scale, which
indicates that individuals can hold onto their current strate-
gies and play game with neighbors for several rounds be-
fore they modify their behaviors. This implies that the
strategy has lifetime. From the social and biological points
of view, the lifetime of a strategy is related to the fitness
that an individual obtains through the strategy. If an in-
dividual owns positive fitness in the current generation,
she tends to hold her current advantageous behavior for a
longer time. Whereas, for an individual obtaining negative
fitness in the current generation, she will try other possible
behaviors. Therefore, in this paper we consider the case
where an individual i updates her behavior with probability
pi(t) = 1

1+ηmax(0, fi)
. The time scale parameter η ≥ 0 ad-

justs how long individuals update their behaviors. The case
of η = 0 corresponds to original networked game model
where individuals immediately update their strategies after
one round of game. For η > 0, the behavior with higher
fitness has longer lifetime. Below we will investigate how
individuals evolve their strategies under the control of pa-
rameter η in different networked systems.

3. Results

At the beginning, let’s study the evolution of extortion
strategy in well-mixed population. For a well-mixed popu-
lation (complete graph) when cooperators interact with de-
fectors and extortioners together, the cooperation behavior
will slightly decrease for a large value of η=100, which is
replaced by extortioners and defectors (see Fig. 1). This
is due to the fact that, when cooperators interact with de-
fectors and extortioners in the well-mixed population, each
individual can interact with all other individuals, and intro-
ducing the time scale factor lets defector or extortioner own
long lifetime to exploit a neighboring cooperator. Hence,
the time scale factor can not promote the emergence of co-
operation in well-mixed population. Whereas, the situation
may change when individuals interact in spatial networks.
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Figure 2: Evolution of (a) cooperation, (b) extortion, (c)
defection, (d) fitness, (e) cooperator-extortioner pairs, (f)
pairs that bring punishment versus the benefit factor b in
the homogeneous random networks with < k >=4,6,8, re-
spectively, and χ=5.

Let’s then consider the influence of the average degree
on the evolution of extortion behavior in homogeneous ran-
dom networks with different degrees. A homogeneous net-
works can be obtained by reshuffling edges of a nearest-
neighbor network sufficient times so that the edges are ran-
domly rewired without changing the degree of nodes in the
original network [17].

Firstly we investigate the change of frequencies of strate-
gies with a function of the benefit factor b. It is found from
Fig. 2 that the evolution of three strategies is similar in three
kind of homogeneous random networks for η=0, the fre-
quencies of cooperation will decrease with the increase of
b. Whereas, the increase of η promotes the frequencies of
cooperators and extortioners in all the three kinds of homo-
geneous random networks. This is due to fact that in terms
of Eq. (1), extortioners are neutral with defectors and they
coexist in the network, whereas, the snowdrift-like relation
between extortioners and cooperators makes the partner of
extortioner more likely to turn to cooperator under the my-
opic best response rule, and extortioners can invade coop-
erative clusters. When introducing the time scale factor and
increasing the parameter η, there are different results for de-
fectors, extortioners and cooperators. A defector can obtain
high payoff from her cooperative neighbors, but leave neg-
ative payoff as a return to them. As a consequence, those
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Figure 3: Evolution of (a) cooperation, (b) extortion, (c)
defection, (d) fitness, (e) cooperator-extortioner pairs, (f)
pairs that bring punishment versus the extortion factor χ
in the homogeneous random networks with < k >=4,6,8,
respectively, and b=2.

neighboring cooperators of defectors tend to adopt either
the defection or the extortion strategy in the subsequent
rounds, which in return diminishes the gains for defectors,
hence leading to the short-term lifetime of the defection
strategy. In contrast, those neighboring cooperators of ex-
tortioners are much more better off since they can obtain
some tiny positive payoffs, irrespective of being extorted by
them. Consequently, when the strategy’s lifetime is related
to her fitness, extortioners can form stable relationship with
cooperators in a long term, which leads to the boom of
both cooperators and extortioners in the network, and there
exist lots of cooperator-extortioner pairs in network when
η=100. The frequency of cooperators will decrease mono-
tonically with the network becoming dense, which is due to
the fact that cooperators are easy to meet defectors and be
exploited by them in denser networks, which are validated
by the decrease of cooperator-extortioner pairs and the in-
crease of pairs that bring punishment in dense networks.

Then we turn to study the influence of the extortion fac-
tor χ to the evolution of extortioners and cooperators in the
homogeneous random networks. The cooperators obtain
less with the increase of χ, as exploited more by extortion-
ers. It is shown from Fig. 3 that, for η=0, the frequency of
cooperators monotonically decreases with the increase of
χ, which is mostly replaced by extortioners. Whereas, for
η > 0, the evolution of cooperation and extortion will be-
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come nontrivial, which can be understood through strategy
pairs. Following the increase of η, there are more extortion-
ers replacing defectors in the random network since extor-
tioners can invade clusters of defectors and induce more
cooperators around them. It is validated by Figs. 3(e) and
3(f) that there are more cooperator-extortioner pairs that re-
placing pairs that bring punishment, i.e., defector-defector
pairs, defector-extortioner pairs and extortioner-extortioner
pairs. Hence, the time scale factor can play nontrivial roles
in the evolution of cooperation in the homogenous random
networks. Following the increase of network density, the
frequency of cooperators will descend since the coopera-
tors are easy to be explored by defectors, which leads to the
decrease of cooperator-extortioner pairs and the increase of
pairs that bring punishment in dense networks.

4. Conclusion

In this paper, we studied the influence of time scales
on the evolution of extortioners in random networks. We
shows that if strategies’ lifetime is related to their fitness, it
is easy for the extortioners to invade the clusters of defec-
tors, and form stable relationship with cooperative neigh-
bors. Therefore, introducing the time scale factor into
game dynamics promotes the stable existence of extortion-
ers and furthermore enhances the cooperation level in net-
worked systems. Particularly, different from the traditional
networked game theory, where cooperators can form tight
clusters to defend the invasion of defectors in PD game, the
snowdrift-like relation between extortioner and cooperator.
The cooperation level will decrease monotonically with the
network becoming dense since cooperators are easy to be
exploited by defectors in denser networks. The discovery
of zero-determinant strategies is changing our viewpoint of
game theory.
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