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Abstract—To alleviate congestion in traffic networks is
one of the most important problems to establish effective
movements of vehicles. In this paper, we propose a new
routing strategy using a memory effect. From the view
points in the field of the complex networks, this paper deals
with efficient control of flow on the complex networks.
Conventional routing strategies use probabilistic rules to
route the vehicles on the traffic networks. On the other
hand, our proposed method uses a deterministic rule, or the
memory effect. The memory effect means how many ve-
hicles are moved through the nodes in the past history. In
addition, another reason why we use the memory effect is
that every node does not need to communicate the adjacent
nodes to route the vehicles to their destinations because
the memory effect is the information owned by each node.
From the results of the numerical simulations, by using
the memory effect, our proposed method reduces the traf-
fic congestion effectively compared with the conventional
routing strategies. Then, we confirmed that our proposed
strategy effectively routes the vehicles to their destinations.

1. Introduction

An important problem to establish effective flows on net-
works is how to alleviate congestion. Recently, more and
more researchers have begun to develop models for ana-
lyzing dynamic flows on complex networks to resolve this
problem. For example, Ohira et al. have investigated the
optimal network structure for packet flow[1], and proposed
routing strategy with a stochastic rule which has tolerance
for the computer networks with congestion. Arenas et
al.[2] analytically showed a transition point for hierarchi-
cal branching networks. Several structures of the computer
networks with congestion have been tested in [3]. Park et
al.[4] proposed a cascade failure strategy for complex net-
works, and they found a congestion phase-transition phe-
nomenon by a key parameter characterizing the node ca-
pacity. Kimura et al. proposed a routing strategy with
chaotic neurodynamics[5, 6] to alleviate packet conges-
tion in computer networks, and the proposed routing strat-
egy shows high performance for several topologies of the
complex networks[5, 6]. The routing strategy with chaotic
neurodynamics[5, 6] is improved by adding the informa-
tion of the adjacent routers[7], and the improved chaotic

routing strategy shows higher performance than the con-
ventional routing strategies[7].

A good routing strategy for traffic networks is to be
moved vehicles to their destinations as quickly as possible
by avoiding traffic congestion. The Dijkstra algorithm[8] is
one of the basic routing strategies. If the number of vehi-
cles in the traffic network is very small, this routing strat-
egy works well. However, if the number of the vehicles in-
creases, the Dijkstra algorithm exhibits poor performance
because it uses only the information of the shortest paths;
the node through which many shortest paths pass are easily
congested. Thus, it is a very important problem to pro-
pose a sophisticated routing strategy for avoiding the traffic
congestion. Recently, Wu et al. proposed dynamic traf-
fic model to route the vehicles in the traffic networks[9].
They applied a stochastic rule to determine the next node
of the vehicles, and found a phase transition from free flow
to congestion for the traffic networks[9].

In this paper, as one of the new routing strategies for
the traffic networks, we proposed a routing strategy with
a memory effect. From results of computational simula-
tions, we confirmed that proposed routing strategy shows
higher performance than the conventional routing strategies
for different underlying network topology.

2. Traffic network model

We used weighted and undirected graphs G = (V, E) to
construct traffic network models[9] where V is the set of
nodes, and E is the set of links. Each node represents an
intersection in the traffic network, and each link represents
a road connection between the intersections. N = |V | sig-
nifies the number of nodes in the network. In this traffic
model, the ith node (i = 1, . . . ,N) has two characteristics
described as follows:

1. Largest stored capacity Hi. The largest stored capac-
ity corresponds to the maximum number of vehicles
stored in the ith node. The largest stored capacity Hi

is defined by Hi = ρ × ki, where ρ is a control param-
eter and ki is a degree of the ith node.

2. Processing capacity Ci. Processing capacity corre-
sponds to the the number of vehicles moving to the
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next nodes from the ith node at each iteration. The
processing capacity Ci is defined by Ci = λ×Hi, where
λ is a control parameter.

In this paper, we set ρ = 2.0 and λ = 0.2. In this traffic
network, when a vehicle is generated at a node, it is moved
from a node to another through the links. The vehicle is
stored at the tail of the stored capacity of the moved node.
All the vehicles are moved according to First-In-First-Out
basis. In addition, if the stored capacity of the moved node
is full of the vehicles, the vehicle is not moved to the node,
then, the vehicle will wait for the next opportunity.

3. A routing strategy with a memory effect

To realize a proposed vehicle routing strategy using a
memory effect, first, we introduced a neural network in
the same way used in [5, 6, 10]. In our proposed routing
strategy, each node has its own neural network which is
fully connected by neurons which correspond to the adja-
cent nodes. A connection between the ith node and its jth
adjacent node in the traffic network is expressed by the i jth
neuron in the neural network.

In the proposed routing strategy, each neuron has two
kinds of effect: a memory effect and a distance effect. The
memory effect is defined as follows:

ζi j(t + 1) = α

t
∑

γ=0

kγr xi j(t − γ), (1)

where α is a scaling parameter of the memory effect; kr is
a decay parameter; xi j(t) is an output of the i jth neuron at
the tth time and will be defined by Eq.(3).

Using the memory effect, if a neuron which has just fired
hardly fires for a while. Namely, each node can memorize
a past routing history using the memory effect, then, an
adjacent node to which many vehicles have been moved is
not selected as a moved node for a while.

The distance effect is defined as follows:

ξi j(t + 1) = β















di j + d jg(vi(t))
∑Ni

i (di j + d jg(vi(t)))















, (2)

where β is a controlling parameter of the distance effect; Ni

is the number of adjacent nodes of the ith node; vi(t) is a
moving vehicle from the ith node at the tth time; g(vi(t)) is
a destination of vi(t); di j is the shortest distance between the
ith node and the jth adjacent node; d jg(vi(t)) is the shortest
distance between the jth adjacent node and g(vi(t)).

The output of the i jth neuron is defined as follows:

xi j(t) =



























1

(if the jth adjacent node is de-
termined as the moved node
from the ith node

)

,

0 (otherwise).

(3)

If the sum of Eqs.(1) and (2) of the i jth neuron takes the
largest value among all the neurons in the neural network,
the i jth neuron fires, that is, a vehicle at the ith node is
moved to its jth adjacent node. Then, the output of the i jth
neuron, xi j(t), is updated by Eq.(3).

4. Computer simulation

To measure the performance of the proposed routing
strategy, we compared the proposed routing model with
two conventional routing strategies. The first one is the Di-
jkstra algorithm. Vehicles in the Dijkstra algorithm moved
to their destinations only along the shortest paths. In this
model, we used the hop information as the weights of the
links, then, calculated the shortest paths between the nodes
in the traffic networks.

The second one is the Dynamic Traffic Model (DTM)
proposed in [9]. To find the optimal adjacent nodes for the
vehicles, this model uses the following probability:

P j =
T φ

i j(1 + k j)
∑Ni

i=1 T φ

i (1 + ki)
, (4)

where φ is a control parameter; ki is the degree of the ith
node. Ti j is the distance between the ith node and the jth
node which is calculated by the Bureau of Public Roads
formula[11]. The Bureau of Public Roads formula[11] is
defined as follows:

Ti j = t0i

(

1 + δ

(

Qi

Hi

)ψ)

, (5)

where δ and ψ are control parameters; t0i denotes a cost at
zero flows; Qi is the number of existing vehicles of the ith
node. we set the parameters φ in Eq.(4) to 0.1, δ and ψ in
Eq.(5) to 0.15 and 4 in the same way used in [9].

In these simulations, we used two different types of the
proposed routing strategies. The first one is the memory
routing strategy with the hop information (MH), and the
second one is the one with betweeness information (MB).
A different point between these proposed routing models
is characteristic of the weights of the links. The first one
(MH) used the number of hops between the nodes to cal-
culate the shortest distance, and the second one (MB) used
the betweeness to calculate the shortest distance in the traf-
fic network.

We conducted computer simulations by the following
procedures. First, we generated vehicles with which the
origins and the destinations were randomly assigned. In
addition, each node calculates the shortest path from the
node to the other nodes. Namely, each node always has
a static routing table which contains an information list of
the shortest distances between any two nodes. A selection
of the adjacent node and movement of the vehicle were si-
multaneously conducted at every node. We conducted 30
simulations and averaged the results.
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Figure 1: Relationship between the density of the vehicles (D) and (a) the number of flows (F), and (b) the number of
vehicles arriving at their destinations (A) by the Dijkstra algorithm (Dijkstra), the Dynamic Traffic Model (DTM)[9], the
memory routing strategy with the hop information (MH), and the memory routing strategy with the betweeness informa-
tion (MB) for the scale-free networks.

We repeated the node selection and vehicle movement
for 1, 000 iterations. We fixed the total number of vehicles
in the traffic network. Thus, when a vehicle arrived at its
destination, we generated a new vehicle. Then, a origin
and a destination of the new vehicle are randomly decided
using uniformly distributed random numbers. We set the
parameters in Eqs.(1)–(3) as follows: α = 0.5, kr = 0.95,
and β = 15.0.

As topologies of the traffic networks, 100 nodes of the
scale-free networks[12] and the Waxman’s network[13] are
used in these simulations. To evaluate the performance of
the proposed strategies and the conventional routing strate-
gies, we measured density of the vehicles, D, the number
of flows, F, and the number of vehicles arriving at their
destinations, A.

First, we evaluated four routing strategies, the Dijkstra
algorithm (Dijkstra), Dynamic Traffic Flow (DTM)[9], the
memory routing strategy with the hop information (MH),
and the memory routing strategy with the betweeness in-
formation (MB) for the scale-free networks[12]. The scale-
free networks are generated in the same way as Barabási
and Albert[12]. This network is constructed by the follow-
ing procedure: first, we made a complete graph which has
four nodes. Then, we put a new node with three links at ev-
ery time step. Next, we connected three links of the newly
added node to the nodes already existing in the traffic net-

work with the probability Π(ki) =
ki

∑N
j=1 k j

, where ki is the

degree of the ith node (i = 1, . . . ,N); N is the number of
nodes at a current iteration.

Results for the scale-free networks are shown in Fig.1.
In Fig.1(a), although the number of flows (F) in the Di-
jkstra algorithm (Dijkstra) and the Dynamic Traffic Model
(DTM) rapidly decreases when the density of the vehicles
(D) becomes larger, the memory routing strategy with hop
information (MH) and the one with betweeness informa-
tion (MB) keep high numbers of flows. In addition, In
Fig.1(b), the number of arriving vehicles (A) in the pro-
posed routing strategies (MH and MB) is larger than the

Figure 2: An example of the Waxman’s network con-
structed by 50 nodes[13]. Parameters in Eq.(6) are set to
a1 = 0.5 and a2 = 0.15, respectively.

Dijkstra and DTM.
Next, we evaluated four routing strategies for the Wax-

man’s networks[13]. The Waxman’s network is con-
structed by the following procedure: first, we put N nodes
in a lattice pattern. Then, we connected the nodes by the
following probability:

Pi j = a1 exp

(

−di j

a2dmax

)

, (6)

where Pi j is connection probability between the ith node
and jth node; di j is the shortest distance between the ith
node and jth node; dmax is the maximum distance in the
network; a1 and a2 are control parameters which take be-
tween 0 and 1. In this network model, if a1 becomes larger,
there will be more links on the network. In addition, if
a2 becomes larger, there will be longer links on the traffic
networks. An example network is shown in Fig.2. In this
paper, we set the parameters a1 = 0.5 and a2 = 0.5.

Results for the Waxman’s networks are shown in Fig.3.
In Fig.3(a), as well as the results of the scale-free networks
(Fig.1), the proposed routing strategies (MH and MB) keep
larger number of flows (F) than the Dijkstra and DTM.
Moreover, in Fig.3(b), the proposed routing strategies also

- 174 -



0.2

0.4

0.6

0.8

1.0

1.2

1.4

 10  20  30  40  50  60  70  80  90  100

T
he

 n
um

be
r 

of
 f

lo
w

s 
(F

)

Density of the vehicles (D)

Dijkstra
DTM

MH
MB

(a)

×106

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

 10  20  30  40  50  60  70  80  90  100

T
he

 n
um

be
r 

of
 a

rr
iv

in
g 

ve
hi

cl
es

 (
A

)

Density of the vehicles (D)

Dijkstra
DTM

MH
MB

(b)

×105

Figure 3: Relationship between the density of the vehicles (D) and (a) the number of flows (F), and (b) the number of
vehicles arriving at their destinations (A) by the Dijkstra algorithm (Dijkstra), the Dynamic Traffic Model (DTM)[9], the
memory routing strategy with the hop information (MH), and the memory routing strategy with the betweeness informa-
tion (MB) for the Waxman’s networks.

keep larger number of arriving vehicles (A) than the Dijk-
stra and DTM. In the case of the Waxman’s networks, the
performance of the memory routing strategy with the hop
information (MH) is rather higher than the one with the be-
tweeness information (MB) when the density of vehicles is
between 20 and 50.

Vehicles in the Dijkstra algorithm and DTM cannot
move to their destinations when the density of the vehicles
increases because there is few flows in the traffic network.
These results indicate that the traffic congestion easily oc-
curs in the traffic network by using the Dijkstra algorithm
and Dynamic Traffic model. Thus, the vehicles cannot ar-
rive at their destinations because of the traffic congestion.
On the other hand, vehicles in the proposed routing strate-
gies can move to their destinations even if the density of
the vehicles increases because the flows in the traffic net-
work are kept higher. Further, from the results of Figs.1
and 3, even if the topology of the traffic network changes,
the proposed routing strategy keeps high performance.

5. Conclusion

In this paper, as a new routing strategy in the traffic net-
work, we proposed the memory routing strategy. Using
memory effect, the proposed routing strategies show higher
performance than the conventional routing strategies for
the scale-free networks and the Waxman’s networks. By
using the memory effect, the performance of the proposed
routing strategies becomes outstanding when we compare
its performance with that of the decent-down hill routing
strategy and the stochastic routing strategy. However, we
do not clarify why the memory effect effectively works for
alleviating the traffic congestion in this paper. Thus, in the
future works, we consider analysis of the memory effect
from the view point of the alleviation of the traffic conges-
tion.

The research of T.I. is partially supported by Grant-
in-Aids for Scientific Research (B) (No.20300085) from
JSPS.
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