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Abstract—Network structures can be found in various
kinds of biological and engineered systems as medium
for communication among the respective types of network
nodes. The field of complex networks has paved the way to
a generalized theoretical formalization of network topolo-
gies and these techniques have also been applied to inves-
tigate the connectivity of functional brain networks. In this
paper, we discuss the method for extracting brain func-
tional networks from fMRI measurement data and how to
obtain characteristic complex network measures. We also
apply the same techniques to ISP network topologies and
explain fundamental similarities and differences.

1. Introduction

Recently, the progress in the field of network science has
stimulated the study of a wide variety of network structures
found in biological and engineered networks. The semi-
nal work by Albert and Barábasi [1] and its introduction
of the concept of scale-free networks has paved the way to
a greater understanding of universal structures that can be
observed in the connectivity of WWW documents, Internet
routers, but also gene regulatory networks and brain func-
tional networks [2]. Additionally, defining essential mea-
sures on connectivity permits quantifying and comparing
different network topologies among each other. Especially,
with the current redesign efforts toward a Future Internet, it
is expected that understanding the mechanisms of biolog-
ical networks is helpful for designing robust and adaptive
New Generation Networks (NWGN) [3].

A biological network that shows remarkable abilities is
that of the human brain. However, current neuroimaging
techniques are not as advanced yet to observe the inter-
actions among individual neurons. Methods like MEG or
EEG can capture time series data at a resolution of mil-
liseconds, but only for a limited number of sample points
and not the entire brain. On the other hand, functional MRI
(fMRI) can only capture data at a time resolution of sec-
onds, but obtains complete 3-dimensional brain scans at a
spatial unit of voxels (cubes of about 3mm in side). The
rather low spatial resolution of fMRI leads to regarding
nodes in brain networks as neuron groups rather than indi-
vidual neurons, but it helps in understanding how different
regions in the brain are activated during a cognitive task.

In this paper, we present a complex network analysis of
brain networks from fMRI data and use complex network
measures to compare their topologies with that of Internet
providers. In line with other work [4, 5] we investigate typ-
ical complex network measures such as node degree, char-
acteristic path length, clustering coefficient, and modularity
to describe the network community structure [6, 7].

The paper is organized as follows. In Section 2 we sum-
marize some essential features of complex networks as well
as provide a definition of the measures we are applying.
Then, in Section 3 we briefly explain the experiment which
is used to extract functional MRI time data to network
topologies. This is followed in Section 4 by a brief evalu-
ation and the comparison with data of an Internet provider
architecture. Finally, Section 5 concludes this paper.

2. Complex Networks and Their Measures

Complex networks describe random networks in real
worlds based on specific topological features, such as
heavy-tailed degree distribution, high clustering coeffi-
cient, modularity and community structure, etc. Two types
of networks have been well studied in the past. Scale-free
networks are characterized by a power-law degree distribu-
tion of their nodes, i.e., the number of other nodes to which
any node is connected is not limited to a single scale, but
varies over several orders of magnitude. On the other hand,
small-world networks refer to those networks where any
node can be reached from any other in few hops (“six de-
grees of separation”). Small-world networks have small
diameter and high clustering coefficient.

Now, we briefly review the measures of complex net-
works that are used for characterizing a network consisting
of the set of nodes N. Let n and ` be the number of nodes
and links, respectively. The matrix A is the n × n dimen-
sional adjacency matrix, i.e., ai j = 1 if a link exists between
nodes i, j ∈ N and 0 otherwise. We list here the metrics of
interest from [5] to which the reader is referred for further
details.

• Degree ki of node i describes the number of neighbors
to which i is connected.

ki =
∑
j∈N

ai j (1)
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• Characteristic path length L of the network is the av-
erage of shortest paths Li of node i to all other nodes

L =
1
n

∑
i∈N

Li =
1
n

∑
i∈N

∑
j∈N, j,i di j

n − 1
(2)

with the shortest distance di j between nodes i and j.

• Clustering coefficient C of the network expresses how
nodes linked to any given node i are also linked among
each other

C =
1
n

∑
i∈N

Ci =
1
n

∑
i∈N

2 ti
ki (ki − 1)

(3)

where Ci is the clustering coefficient of node i and ti
is its number of triangles among neighboring nodes:
ti = 1

2
∑

j,h∈N ai j aih a jh.

We are interested in the modularity structure of the brain
functional network and therefore also investigate the fol-
lowing metrics beside the traditional ones given above. Let
us define the set of disjoint modules M and ki(m) is the
number of links between node i and all nodes in m ∈ M.

• Modularity Q of the network describes how well the
network is divided into modules of subnetworks

Q =
1
`

∑
i, j∈N

(
ai j −

kik j

`

)
δmi,m j (4)

where for mi,m j ∈ M we have δmi,m j = 1, if mi = m j

and 0 otherwise.

• Participation coefficient of a node i is defined over the
relative node degree in each module.

yi = 1 −
∑
m∈M

(
ki(m)

ki

)2

(5)

• Within-module degree (z-score) of node i is

zi =
ki(mi) − k̄(mi)

σk(mi)
(6)

where k̄(mi) and σk(mi) are the mean and standard de-
viation of the within-module mi degree distribution.

3. Extraction of Networks from fMRI Data

Basically, fMRI measures the change in blood flow in the
brain related to neural activity. Thus, the output from fMRI
is related to the experiment design. In this work, we con-
sider a simple retinotopic experiment where the primary
visual cortex (V1) of the subject is stimulated by a checker-
board sequence. Three checkerboard images are presented
for stimulation of the center, middle, and peripheral regions
of V1 for 15s each, before a rest without stimulation, see
Fig. 1. This sequence is repeated 6 times over 3 sessions.
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Figure 1: Epochs of retinotopy experiment

3.1. Types of Connectivity in Brain Networks

In [8], Sporns distinguishes between three different types
of connectivity. We focus in this paper on functional con-
nectivity, but briefly list all three types. Anatomical con-
nectivity is the structural connectivity among neurons and
remains rather static over short time scales, but may slowly
change over time. Links are directional with respect to neu-
ral spike directions. Functional connectivity expresses the
statistical dependence among spatially distributed neurons
based on temporal correlation. Thus, functional links are
undirected. Finally, effective connectivity describes the re-
lationship between neural systems inferred by causal inter-
action models and considers directional links.

3.2. Processing Steps

The processing steps for extracting functional brain net-
works are sketched in Fig. 2. First, we extracted from fMRI
measurements the time series for each voxel using the SPM
Toolbox for MATLAB, which we also used to realign and
normalize the data, but omitted smoothing. A correlation
matrix is constructed among the time series of each pair of
voxels (x1, x2) and correlation is measured using Pearson’s
correlation coefficient as the fraction of the covariance of
the two time series V(x1, t) and V(x2, t) over the product of
their standard deviations, see Eqn. (7)

ρx1,x2 =
〈V(x1, t) V(x2, t)〉 − 〈V(x1, t)〉 〈V(x2, t)〉

σ(V(x1))σ(V(x2))
(7)

where σ(V(x))2 = 〈V(x, t)2〉 − 〈V(x, t)〉2.
Applying a masking threshold rc we obtain the threshold

matrix A with entries ai, j = 1 if the entry in the correlation
matrix is above rc and 0 otherwise. This matrix can then be
regarded as the adjacency matrix of the network graph of
voxels which we use for obtaining our results.

4. Evaluation and Comparison with ISP Topologies

We also used the measurements available online from
[9] of ISP topologies, in particular 3 large ISP networks:

- 189 -



Center Middle Peripheral

(a) Activation areas

Center

Middle

Peripheral

Rest

(b) Correlation matrices

Center

Middle

Peripheral

Rest

(c) Threshold matrices

Figure 2: From fMRI scans to complex network measures

Figure 3: ISP topology of the AT&T network

AT&T, Sprint, and Level 3. The adjacency lists were ex-
tracted to construct the adjacency matrices and we limit
ourselves to only backbone and gateway routers. An ex-
ample of the AT&T network topology is shown in Fig. 3.

4.1. Node Degree Distribution

The node degree distribution is shown in Fig. 4(a) for
rc = 0.85 for the brain network. In order to reduce the
requirements on memory and processing time, we only se-
lected each voxel at a step size of 5. As the figure shows,
the shape of the distribution indicates a scale-free network
regardless of the stimulation. Roughly the same shape
can also be recognized from the degree distribution of ISP
topologies in Fig. 4(b), where for the sake of comparison
we added a linear fit from the brain data as dashed line.

4.2. Complex Network Measures

We performed analysis on further typical complex net-
work measures shown in Table 1. The number of nodes n
and number of links ` lie in similar orders for both types
of networks. Furthermore, the average node degree 〈k〉 is
higher for brain networks and ascending from Rest to Cen-
ter, Medium, Peripheral. Clustering coefficient C, charac-
teristic path length L, and modularity Q are also higher than
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(a) Brain network with rc = 0.85
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Figure 4: Node degree distribution

ISPs and similar among all brain networks. Among the
ISPs, the Level3 network has the highest 〈k〉 and C while it
has short path length and Sprint has the highest modularity.

4.3. Hierarchical Modularity

Hierarchical modularity [7] describes the community
structure of the network and the roles that nodes play within
it. Using participation coefficient and within-module de-
gree, and partitioning the plot area as shown in Fig. 5, we
can see that the brain networks all have similar structure,
where the majority of nodes are located in categories R1,
R2, R3 representing ultra-peripheral, peripheral, and non-

Table 1: Comparison of complex network measures
Network n ` 〈k〉 C L Q

Rest 478 2511 10.51 0.47 7.71 0.52
Center 515 2951 11.46 0.48 6.18 0.56

Medium 518 3345 12.92 0.50 7.52 0.53
Periph. 565 4164 14.74 0.51 6.25 0.53
AT&T 631 2078 6.59 0.10 5.04 0.27
Sprint 604 2274 7.53 0.15 4.18 0.48
Level3 624 5300 16.99 0.26 3.35 0.33
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(a) Brain network with rc = 0.85
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Figure 5: Hierarchical modularity

hub connector nodes, respectively. In comparison, the ISPs
have mostly non-hub connectors. The Rest network has
a few provincial (R5) and connector hubs (R6), but the
AT&T network has more nodes in R5 and Level3 more
in R6. Kinless hubs (R7) appear rarely and only for the
Sprint network, which also has several non-hub kinless
nodes (R4). Modularity is visualized for the Rest network
graph using an optimized Fruchterman-Reingold layout in
Fig. 6. The color and size of each node represent their mod-
ule and category number Ri, respectively.

5. Conclusion

In this paper we discussed the extraction of brain func-
tional networks from fMRI data from a retinotopic experi-
ment and compared their complex network measures with
that of ISP topologies. We found that almost all brain net-
works had similar values, which can be attributed to the
similarity of stimulations. Most metrics are comparable
to ISP topologies, although with higher values. Analysis
of the community structure revealed fewer hubs in brain
networks than ISPs. In the future, we plan to study the
structure and dynamics of brain functional networks dur-
ing recognition tasks.
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Figure 6: Visualization of modularity in Rest network
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