
Standard C++ Compiling to GPU with Lambda Functions

Ádám Rák† and Gergely Feldhoffer†‡ and Gergely Balázs Soós‡ and György Cserey†∗

†Faculty of Information Technology, Pázmány Péter Catholic University,
Budapest, Práter u. 50/a. 1083, Hungary

‡StreamNovation Ltd. Budapest, Práter u. 50/a. 1083, Hungary
∗ Infobionic and Neurobiological Plasticity Research Group,

Hungarian Academy of Sciences, Pázmány Péter Catholic University, Semmelweis University,
Budapest Práter u. 50/a, H-1083, Hungary

Email: [rakad,flugi,soos,cserey]@itk.ppke.hu

Abstract—In this paper, a new method of a compiler
application to GPU is introduced. In this method, a hy-
brid executable is generated from the C++ lambda function
based code. Our compiler plugin creates GPU accelerated
subroutines from code using our library. A C++ runtime li-
brary is designed embedding the generated GPU code into
the original project.

1. Introduction

New generation hardwares contains more and more pro-
cessors and the trends show that these numbers will in-
tensely increase in the future. The question is how could
we program these systems and may we port earlier codes
on them? There is a huge need for this today as well as
in the forthcoming period. Our new approach of the au-
tomation of software development may change the future
techniques of computing science.

Exploiting the advantages of the new architectures needs
algorithm porting which practically means the complete re-
design of the algorithms. New parallel architectures can
be reached by “specialized“ languages (CUDA, OpenCL,
Verilog, VHDL, etc.), for successful implementation, pro-
grammers must know the fine details of the architecture.
After a twenty years long evolution, efficient compiling for
CPU does not need detailed knowledge about the architec-
ture, the compiler can do most of the optimalizations. Can
we develop as efficient GPU (or other parallel architecture)
compilers as the CPU ones? Will it be a two decade long
development period again or can we make it in less time?

The specification of a problem describes a relationship
from the input to the output. The most explicit and precise
specification can be a working platform independent ref-
erence implementation which actually transforms the input
from the output. Consequently, we can see the (mostly)
platform independent implementation, as a specification of
the problem.

Parallelization must preserve the behaviour in the aspect
of specification to give the equivalent results, and should
modify the behaviour concerning the method of the imple-
mentation. Automated hardware utilization has to separate

the source code (specification) and optimization techniques
on parallel architectures.

There are different trends and technical standards emerg-
ing. Without the claim of completeness, the most sig-
nificant contributions are the following: OpenMP [1] -
supports multi-platform shared-memory parallel program-
ming in C/C++ and Fortran, practically it uses prag-
mas for existing codes. OpenCL [2] - is an open, stan-
dard C-language extention for the parallel programming of
heterogeneous systems, also handling memory hierarchy.
Threading Building Blocks of Intel [3] - is a useful opti-
mized block library for shared memory CPUs, which does
not support automation. One of the automation supported
solution providers is the PGI Accelerator Compiler [4] of
The Portland Group Inc. but it does not support C++.
There are problem-software or language specific imple-
mentations on many-core architectures, one of them is a
GPU boosted software platform under Matlab, called Ac-
celerEyes’ Jacket [5]. Overviewing the growing area, there
are successful partialy solutions, but there is no universal
product and still there are a lot of open problems.

Our aim is machine learning boosted OpenCL paral-
lelization of any standard C++ source code by separating
programming and parallelization meta-programming. This
presentation shows that the basic technological problems
(OpenCL source code generation, host code generation and
insertion) are manageable: a C++ library is introduced,
which can be compiled with every C++0x standard [6]
compatible compiler, and produces CPU code. Our com-
piler plugin and C++ library creates GPU accelerated exe-
cutables. This approach is methodically one step after the
Intel Thread Building Blocks, because the parallelization
schemes and memory access patterns are still fixed and pro-
vided by our library, but the building blocks themselves be-
come completely user defined in the form of lambda func-
tions.

This paper is organized as follows. After the introduc-
tion, in section 2 a general overview of the architecture of
the new generation GPUs is given. The lambda functions in
the new standard C++ are depicted in section 3. In section
4 we introduce our Minotaurus project which is a gcc based

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 161 -



Figure 1: In the case of a GPU, most of the parts of a
normal CPU are sacrificed to placethe maximum amount
of processing units on the chip. In most cases, one core
is completely reduced to a simple 32bit FPU / ALU pair,
and many cores use the same execution control units on the
chip.

C++ compiler plugin. Results and working demonstrations
are presented in section 5.

2. GPU architecture

Complex real-time 3D rendering needs considerable
computing power, orders of magnitude greater than what
one CPU can provide. But fortunately the algorithms are
all data-parallel, which means that the same code must
be executed on all the threads, just the processed data is
different. These requirements gave rise to the massively
SIMD parallel GPU architectures nowadays. Most of the
parts of a normal CPU are sacrifised to place the maximum
amount of processing units on the chip. In most cases one
core is completely reduced to a simple 32bit FPU / ALU
pair, and many cores use the same execution control units
on the chip. The pipelines are generally very deep, fur-
ther allowing more optimization of the architecture. While
CPUs need serious trickery, both in hardware (branch pre-
diction, instruction reordering) and sometimes in software
too (compilers) to deal with deep pipelines, GPUs do not
need this because rendering specific algorithms utilize mas-
sively huge amount of threads, much more than the number
of cores, which makes it very easy to fill the pipelines. This
is possible because every thread runs independently on dif-
ferent data, so there is no dependency between them, so on
every core, on every pipeline stage a different thread can
be executed. The scheduling of threads is done in the hard-
ware to reduce the overhead.

OpenCL provides us an abstraction of the massively
parallel hardwares, where both the computing resources
(cores) and the memory is hierarchial. This approach was
introduced by the hardware manufacturers and it seems
that the multicore industry is heading this way. It is sus-
pected [7] that currently this is the optimal trade-off be-
tween programmability and performance, where the high-
est performance is represented by the FPGAs (Field Pro-

Figure 2: NVidia GPU architecture usually contains 30
Streaming Multiprocessors (SM), where each SM contains
8 scalar processors, 1 double precision unit, 2 special func-
tion units, 16K spared memory and 64K registers.

grammable Gate Array) where everything is parallel, and
the maximal programmability by the single core CPU with
a single thread running. An important feature is that the
memory can be accessed in 1D, 2D or 3D topography, ac-
celerated by the 2D aware hardware caching, and the vir-
tual indexing of the threads can also follow this scheme.

3. Lambda functions in C++

The use of ”lambda” originates from functional pro-
gramming and lambda calculus, where a lambda abstrac-
tion defines an unnamed function. In the new standard
of C++ (known also as C++0x) the syntactic element of
lambda function is introduced to improve functor usability
in templates. The lambda function is an inline expression
of a functor object. It is nameless, only a few syntactic units
can be given: the captured variables, the parameters, the
type of the returning value, and the function body. The cre-
ated functor will have the captured variables as members,
and the constructor will assign the values. The operator()
will be created with the parameters and the given function
body. The function body is limited to use local variables,
the parameters, and the captured variables. There is a con-
venient way to capture all of the local stack variables in the
context as well.

Lambda functions are designed to be used where func-
tors are passed but there is no need to reuse the functor
class anywhere else, and building a whole class in order to
fulfill syntactic requirements for only one use is circuitous.

4. Minotaurus project

The flowchart in Figure 3 shows the main components of
the compiler using our plugin called Minotaurus. As usu-
ally, the gcc compiler has three parts, a frontend, a middle
end and the backend. Minotaurus connects to the middle
end using the inner representation of a gcc compiler be-
sides the GPU application output, generating an OpenCL

- 162 -



Figure 3: This flowchart shows the main components of the
compiler using our plugin called Minotaurus. As usually,
the gcc compiler has three parts, a frontend, a middle end
and the backend. Minotaurus connects to the middle end
using the inner representation of a gcc compiler besides the
GPU application output, generating an OpenCL code based
GPU-accelerated application output.

code based GPU-accelerated application output.
Simplified problem: the programmer specifies the code

parts that can be run efficiently on GPU in lambda func-
tions. Minotaurus compiles the lambda function to ex-
tract the data and control flow, and synthesize the OpenCL
source code which is semantically equivalent to the lambda
function. The programmer picks a template function to ex-
press the pattern of use (scan primitive for example), and
gives the input data. The template function contains the
host code which feeds the GPU kernel function. This is
where we are standing right now.

4.1. Standard C++ code input

With Minotaurus, it is possible to compile CPU only
executable and CPU-GPU mixed executable as well, us-
ing only standard C++ language elements in the common
source code. This is useful if the debugging process is
more complicated with GPU codes, which is usually far
more complicated indeed. There are small differences be-
tween the resulting executables concerning floating point
precision for example, but the theoretic correctness of the
implemented method can be checked.

4.2. Using lambda functions to specify kernels

The fundamental benefit of using lambda functions for
compiling to CPU-GPU mixed executable is the clear sep-
aration of function and parameter data. For the compilation
of the general code, the compiler must explore the full data
dependency of the given function to transport the required
data to the GPU platform before code execution. This data
dependency can be hard to follow because of reading global
variables, pointers to globals, etc. Lambda functions are
closed in this term, besides local variables, only the cap-
tured values and the parameters are accepted inside the

Figure 4: This C++ code demonstrates the usage of the
lambda function in our system. The fill matrix() func-
tion works as a solution template. The solution template
contains hardware specific parallelization schemes and the
memory access patterns. The lambda function is defined
as a parameter of the function. The implementation of the
algorithm is coded by the lambda function. In this given
case, it generates a julia-set demonstrating the exploitation
of the C++ advantages.

function. These variables are given explicitly so any tem-
plate function can handle the memory transfer to the GPU,
so the data dependency of the GPU targeted code can be
satisfied.

4.3. Automatic code generation

The function body of the lambda function may contain
elements of C++, such as complex<> type, or references.
Minotaurus can convert these elements to a semantically
equivalent OpenCL code, using pointers instead of refer-
ences for example. Lambda functions will be converted to
OpenCL functions.

The host code is also generated, the memory transfer
can be handled based on the lambda functions’ members.
The converted lambda functions are called from generated
kernel functions based on the parameter set of the lambda
function. The host code copies the actual data to the kernel
functions, enqueues the kernel, and reads GPU memory to
the returning variables.

4.4. Extendable technology to other languages

Since Minotaurus works in the inner representation of
the compiler, most of the functionality does not depend on
the input language.

4.5. Towards automatic GPU code generation

Some of the hard work is done on Minotaurus right now,
but there is plenty of work ahead. Automatic data de-
pendency exploration of any code segment is required for
general CPU-GPU hybrid compilation. Functional depen-
dency and guaranteed traces of control are needed in order

- 163 -



Figure 5: These images show that the different CPU and
GPU accelerated application output generates the same im-
age result, but the GPU version has a significant 25-times
performance speed-up.

to select a section of the code which can be compiled to
GPU function (entry point of the generated function and
the returning points - it is trivial in lambda functions).

4.6. GPU code generation is functional

We can now compile C/C++ code to OpenCL functions
and host code, so we are able to create a hybrid executable
from purely C++ code. The performance gain is heavily
task dependent, it can be even 80x speed-up. This is notable
since the conversion is purely mechanical, no additional
tweaking is done with OpenCL local variables, and other
sophisticated techniques yet.

5. Results and demonstrations

Figure 4. demonstrates the usage of the lambda func-
tion in our system. The fill matrix() function works as a
solution template. The solution template contains hard-
ware specific parallelization schemes and the memory ac-
cess patterns. The lambda function is defined as a parame-
ter of the function. The implementation of the algorithm is
coded by the lambda function. In this given case, it gener-
ates a julia-set demonstrating the exploitation of the C++

advantages (see Figure 5.).
The GPU accelerated version reached up to 25x perfor-

mance gain on the same source code, utilizing the parallel
GP-GPU technology (NVIDIA GTX 280) compared to the
OpenMP Intel i7 4 cores implementation. This approach
provides C++ support in the kernel code and shows a proof
of concept for automatic GPU code (OpenCL) generation.

Acknowledgement

The Operational Program for Economic Competitive-
ness (GVOP KMA), the support of NVIDIA Professor
Partnership Program and the Bolyai János Research Schol-
arship is gratefully acknowledged. The authors are also
grateful to Professor Tamás Roska for discussions, his sug-
gestions and his never ending patience.

References

[1] L. Dagum, R. Menon, and S. Inc, “OpenMP: an indus-
try standard API for shared-memory programming,”
IEEE Computational Science & Engineering, vol. 5,
no. 1, pp. 46–55, 1998.

[2] A. Munshi, “The OpenCL specification version 1.0,”
Khronos OpenCL Working Group, 2009.

[3] J. Reinders, “Intel threading building blocks,” 2007.

[4] M. Wolfe, “Implementing the PGI Accelerator model,”
in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units,
pp. 43–50, ACM, 2010.

[5] AccelerEyes, “Jacket: a GPU engine for MATLAB,”
2009.

[6] P. Becker, “Working draft, standard for programming
language C++,” ISO/IEC, Tech. Rep, vol. 2798, 2009.

[7] K. Hawick, A. Leist, and D. Playne, “Mixing Multi-
Core CPUs and GPUs for Scientific Simulation Soft-
ware,” tech. rep., Technical Report CSTN-091, Com-
puter Science, Massey University, 2009.

- 164 -


	Navigation page
	Session at a glance
	Technical program

