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Abstract— In the design of low-density-parity-check
(LDPC) codes, it has been proven that codes with variable-
node and check-node degree distributions optimized by the
“Density Evolution” (DE) algorithm can accomplish theo-
retical error performance very close to the Shannon limit.
But the use of the DE algorithm requires two basic assump-
tions — infinite code length and infinite number of iter-
ations performed by the decoder. Unfortunately, neither
requirement can be fulfilled in practice. When the LDPC
code has a finite length, say a few thousand symbols, the
“DE-optimized” degree distributions may not be the best
solutions. In this paper, we propose constructing short-
length LDPC codes with variable-node degrees following
power-law distributions. We show that the proposed scale-
free LDPC (SF-LDPC) codes, when compared with codes
constructed with “DE-optimized” degree distributions, can
achieve lower complexity (in terms of average number of
node degrees), faster convergence time (in terms of num-
ber of iterations executed at the decoder) and similar/lower
error rates.

1. Introduction

In the design of LDPC codes, the error performance of
the codes has been one of the major considerations. It has
also been shown that, in general, irregular LDPC codes
outperform regular ones in terms of error rate under sim-
ilar scenarios [1]. Suppose the most common algorithm,
namely the sum-product iterative decoding algorithm or
the belief propagation (BP) algorithm [1], is used in the
decoder. Given the variable-node and check-node degree
distributions. The best possible error performance of an
LDPC code with such degree distributions can be evalu-
ated from the well-known “density evolution” (DE) mech-
anism. Therefore, by varying the variable-node and check-
node degree distributions, researchers have been able to op-
timize the achievable error performance of the LDPC codes
under different channel conditions [1]–[3].

Three assumptions have been made, however, during the
application of DE. First, it is assumed that in the BP de-
coding algorithm, the updated messages passing forward
and backward between the set of variable nodes and the
set of check nodes are of analog nature, i.e., the messages
can assume the values of any real numbers. Practically,
all numbers have to be quantized or discretized for com-
putation by hardware. To evaluate the exact behavior of
the discretized BP decoder, “discretized density evolution”

(DDE) has been developed [4]. It has been concluded that
when the messages are quantized into discrete levels us-
ing practical quantizers with 10 or more bits, there is little
discrepancy between the results obtained by DE and DDE.
The other two assumptions made in the DE algorithm are
that the code has an infinite length and iterations are per-
formed at the decoder endlessly. Unfortunately, such as-
sumptions are not realizable in practice. Nonetheless, un-
der the condition that the same degree distributions are
used, the achievable error performance of an LDPC code
with finite length will approach that of an infinite-length
LDPC code asymptotically as the code length increases.

With DDE and code rate 1/2, the achievable error per-
formance of an LDPC code has been found to lie within
0.0045 dB of the Shannon limit under a binary-input addi-
tive white Gaussian noise (AWGN) channel [4]. Simula-
tions have also shown that within 0.04 dB of the Shannon
limit, a bit error rate of 10−6 can be achieved with a code
length of 107 and about 800 to 1100 iterations [4]. Yet,
code lengths larger than 106 are not very practical for many
applications because of the huge hardware complexity in-
volved and the long time taken to conduct one iteration —
not to mention the time delay incurred if 1000 iterations are
required to decode one codeword. In reality, short-length
(less than several thousands) LDPC codes will find a lot
more applications, but as mentioned above, their error per-
formance may deviate significantly from the best values.
So, is “DE-optimized” degree distributions the best choice
when the code length is comparatively short?

In recent years, complex networks have been studied
across many fields of science, including computer net-
works, biological networks and social networks [5, 6].
Complex networks, very much like graphs, are structures
consisting of nodes interconnected by edges. Among the
various types of complex networks, scale-free networks are
characterized by their node degrees following power-law
distributions. Compared with regular coupled networks,
small-world networks, and random networks, scale-free
networks of the same size (number of nodes) and with the
same number of connections are found to accomplish the
shortest average path length [7]. That is, the average dis-
tance between any two nodes is the shortest for networks
with a scale-free property. Recall that in the BP decoding
algorithm, updated messages are passed forward and back-
ward between the set of variable nodes and the set of check
nodes iteratively. If the messages can be conveyed from
one node to all other nodes more efficiently, the number of

2008 International Symposium on Nonlinear Theory and its Applications
NOLTA'08, Budapest, Hungary, September 7-10, 2008

- 168 -



iterations it takes for the decoding algorithm to converge
should be lower, particularly in the high signal-to-noise-
ratio (SNR) region where the algorithm is most likely to
converge.

In this paper, we exploit the “shortest average path
length” property of scale-free networks and apply it to
the design of short-length LDPC codes, in which “DE-
optimized” degree distributions may not be the best so-
lutions. Specifically, we will propose constructing short-
length LDPC codes with variable-node degrees following
power-law distributions. Here, we refer such LDPC codes
to as scale-free LDPC (SF-LDPC) codes. We will com-
pare the achievable error performance (threshold) and the
complexity (in terms of average number of node degrees)
between the proposed short-length SF-LDPC codes and
“DE-optimized” LDPC codes. Moreover, we will construct
SF-LDPC codes with length 1008 and 504 using the popu-
lar progressive-edge-growth (PEG) technique [8]. Finally,
we will compare the error rates and the convergence time
(in terms of number of iterations executed at the decoder)
between the constructed SF-LDPC codes and some other
best-known LDPC codes under an AWGN environment.

2. Density Evolution

In the bipartite graph representation of LDPC codes, for
each node, the number of edges connected is called the “de-
gree” of the node. For a given distribution pair (λ, ρ) of an

LDPC ensemble, λ(x) :=
dv∑

k=2
λk xk−1 and ρ(x) :=

dc∑
k=2

ρk xk−1

specifies, respectively, the variable-node and check-node
degree distributions. Also, dv is the maximum variable-
node degree and dc denotes the maximum check-node de-
gree. Moreover, the coefficients λk and ρk, respectively,
represent the fraction of edges connected to the variable
and check nodes with degree k. Based on the degree distri-
butions, the code rate of the system, denoted by R, can be
obtained using

R = 1 −
∫ 1

0
ρ(x)dx/

∫ 1

0
λ(x)dx. (1)

In an LDPC code, each coded bit, denoted by b ∈ {0, 1}, is
represented by a signal with amplitude a = (−1)b for trans-
mission through the channel. Without loss of generality,
suppose an all-zero codeword has been sent. At the receiv-
ing side, assume that the transmitted signal is corrupted
by independent and identically distributed (i.i.d.) Gaus-
sian random variables with zero mean and variance (noise
power) denoted by σ2. Given an LDPC code that is cor-
rupted by noise. The message-passing algorithm employed
by the LDPC decoders allows the exchange of information
between the variable nodes and check nodes during each it-
eration. Moreover, the density evolution algorithm enables
us to track the density of the messages. In the following,
we summarize the main steps in the density evolution algo-
rithm. For details, please refer to [9].

Suppose a belief propagation algorithm based on the log-
likelihood ratio (LLR) is used in the iterative decoder [1].
In the algorithm, each of the LLR variables passing along
the edges connecting the variable nodes and check nodes is
a message. During the lth iteration, it is denoted by m(l).
More specifically, the message passing from variable node
v to check node c is represented by m(l)

vc and that from check
node c to variable node v by m(l)

cv . The value of the message
is given by

m = ln
Pr(a = 1| y)

Pr(a = −1| y)
= ln

p(y |a = 1)
p(y |a = −1)

(2)

where a is a random variable (RV) describing the bit value
of variable node v, and y is a RV representing all the in-
formation integrated into the message. Moreover, Pr(·) and
p(·) denote the probability and the probability density func-
tion, respectively.

Based upon the received signal, the initial message at
variable node v, denoted by m0, can be computed. Then
the messages along the edges can be updated iteratively as
follows [9]:

m(l)
vc =


m0 for l = 0
m0 +

∑
c′∈Cv\{c} m

(l)
c′v for l > 0

(3)

m(l)
cv =

∏

v′∈Vc\{v}
sgn(m(l−1)

v′c )
∑

v′∈Vc\{v}
ln

tanh

∣∣∣∣∣∣∣
m(l−1)

v′c
2

∣∣∣∣∣∣∣

 . (4)

In the above two equations, Cv denotes the set of check
nodes connected to variable node v whereas Vc represents
the set of variable nodes linked to check node c. More-
over, the unconventional probabilistic definition of the sign
function sgn(x) is given by

sgn(x) =



0 for x > 0
0 with probability 1/2 for x = 0
1 with probability 1/2 for x = 0
1 for x < 0

. (5)

Denote the density associated with the messages from
the variables nodes to the check nodes during the lth iter-
ation by Pl and that from the check nodes to the variable
nodes by Ql. Moreover, the initial message density has
been shown equal to [9]

P0(y) =
σ√
8π

exp


−

(
y − 2

σ2

)2
σ2

8

 . (6)

Assuming that all the messages at each node are indepen-
dent of one another, it has been shown that [9]

Pl = P0 ⊗ λ(Ql) (7)

where ⊗ represents convolution.
To compute Ql, we represent the messages m(l)

vc in an
alternative way. We define the map β : [−∞,+∞] →
GF(2) × [0,+∞]. Given a RV z ∈ [−∞,+∞] with distri-
bution Fz and z , 0. Let

β(z) := (β1(z), β2(z)) :=
(
sgn(z),− ln(tanh |z/2|)) . (8)

We also define the “distribution” of β(z) as

Γ(Fz)(s, x) = χ{s=0}Γ0(Fz)(x) + χ{s=1}Γ1(Fz)(x) (9)
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Table 1: Comparison of threshold value and average number of connections between SF-LDPC codes and other best-known LDPC
codes. Common Parameters Optimized Codes in [10] Optimized SF-LDPC Codes

Range of Variable-node Degrees Range of Check-node Degrees σ∗ < k > γ σ∗ < k >
2 to 15 7 to 9 0.9622 4.0087 2.35 0.9430 3.5117
2 to 20 7 to 9 0.9649 4.1638 2.35 0.9449 3.7192
2 to 30 7 to 9 0.9690 4.4963 2.36 0.9513 3.9723
2 to 50 7 to 9 0.9718 5.0765 2.35 0.9535 4.3039

Table 2: Details of LDPC code types used in simulations.

Abbreviation Type of Code Range of Variable-node Degrees Range of Check-node Degrees σ∗ < k >
PEG-DE10 DE-optimized Codes in [10] 2 to 10 6 to 7 0.9558 3.6631

MacKay-DE15 DE-optimized Codes in [12] 2 to 15 7 to 9 0.9622 4.0087
PEG-SF20 Optimized SF-LDPC Codes 2 to 20 7 to 9 0.9449 3.7192

where

Γ0(Fz)(x) = Pr{β1(z) = 0, β2(z) ≤ x}
= Pr{z ≥ − ln tanh(x/2)} (10)

Γ1(Fz)(x) = Pr{β1(z) = 1, β2(z) ≤ x}
= Pr{z ≤ ln tanh(x/2)} (11)

and χ{s=a} equals 1 if s = a and 0 otherwise. Thus, (4) can
be written as

m(l)
cv = β−1


∑

v′∈Vc\{v}
β


m(l−1)

v′c
2


 . (12)

and the density of m(l)
cv is given by

Ql = Γ−1(ρ(Γ(Pl−1))). (13)

Finally, Pl can be expressed as [9]

Pl = P0 ⊗ λ(Γ−1(ρ(Γ(Pl−1)))). (14)

Having found the density Pl, the associated distribution
can be computed using integration. Thus, the above iter-
ative process can determine whether the expected fraction
of incorrect message will go to zero when the number of
iterations increases. For fixed dv and dc, one then can find
the largest value of σ, i.e., best achievable performance or
threshold of the LDPC code, by varying the distribution
pair (λ, ρ) such that the expected fraction of incorrect mes-
sage will go to zero. Optimization of the threshold has been
carried out and the degree distributions of some good codes
have already been found [10]. However, such codes pro-
vide optimal error performance only under an infinite code
length and an infinite number of iterations for decoding.

3. Scale-Free LDPC (SF-LDPC) Codes

Scale-free networks [6] are characterized by power-law
degree distributions. In other words, Pr(k) = Akγ, where
Pr(k) denotes the probability of a randomly selected node
having a degree k, γ is the characteristic exponent and
A is the normalizing coefficient. It has also been shown
that when the value of the characteristic exponent, i.e., γ,
lies between 2 and 3, the average path length of scale-free
networks is O(log(log(N))) [7]. Furthermore, it has been

proven that if the degree distribution of one set of nodes in a
bipartite graph follows a power-law distribution, the degree
distribution of the unipartite graph (network) formed when
the other set of nodes is removed, also follows a power-law
with the same exponent [11]. Because of the aforemen-
tioned reasons, it is natural to expect that LDPC codes with
variable-node degree distributions following power laws
(termed as scale-free LDPC codes subsequently) should
have faster convergence rates because messages can be ex-
changed more efficiently among the variable nodes and the
check nodes.

To construct a scale-free LDPC (SF-LDPC) code, we
assign the fraction of variable nodes with degree k, de-
noted by Prλ(k), according to a power-law function, i.e.,
Prλ(k) ∝ k−γ. To minimize the number of parameters in the
optimization process, we restrict the check-node degrees to
three consecutive integers, i.e., dc − 2, dc − 1 and dc. More-
over, the fraction of check nodes of degree k, denoted by
Prρ(k), is assumed to be

Prρ(k) =
µke−µ

k!
. (15)

Finally, given the maximum variable-node degree dv and
code rate R. We can alter the values of γ and µ in order
to optimize the achievable error performance of SF-LDPC
codes.

4. Results

First, we compare the achievable error-correcting capa-
bility (threshold) between SF-LDPC codes and other best-
known LDPC codes [10]. We assume a code rate of 0.5
and an AWGN channel, at which the Shannon limit equals
0.9787 [10]. Table 1 presents the parameters used and the
results. It can be observed that in all cases, the optimized
threshold values σ∗ for the SF-LDPC codes are compara-
ble with those for other best-known LDPC codes (less than
2% difference). But the average number of connections for
the SF-LDPC codes is significantly smaller (12 to 15% re-
duction) compared to those for other LDPC codes.

Next, we compare the simulation results of three dif-
ferent types of LDPC codes. Details of the codes are
given in Table 2. The first two code types, abbreviated
by “PEG-DE10” and “MacKay-DE15”, are LDPC codes
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(a)

(b)

(c)

Figure 1: Performance of three different types of LDPC codes —
‘PEG-DE10”, “MacKay-DE15”and “PEG-SF20”. Code lengths
are 1008 and 504 while the code rate is 0.5. (a) Bit error rate; (b)
block error rate; (c) average number of iterations per codeword.
with variable-node degree distributions optimized by the
DE algorithm [10, 12]. The third code, abbreviated by
“PEG-SF20”, is an optimized SF-LDPC code. The variable
nodes and the check nodes for “PEG-DE10” and “PEG-
SF20” codes are connected using the progressive-edge-
graph (PEG) method [8], which has been shown to pro-
duce codes with both large girth and large Hamming dis-
tance. For the codes denoted by “MacKay-DE15”, we di-
rectly apply the codes constructed in [12], which are the
best known LDPC codes in terms of error performance that
possess the properties listed in Table 2. Two different code
lengths are used — 1008 and 504, while the code rate is
remained at 0.5. The maximum number of iterations per-
formed to decode one codeword is limited to 50 and the
decoding process will be terminated once the maximum
number is reached. In Fig. 1(a) and (b), we plot the simu-
lated bit error rates (BERs) and block error rates (BLERs),
respectively, for the three types of codes under study. It
can be observed that the optimized SF-LDPC codes pro-

vide similar BER and BLER performance as “PEG-DE10”
and “MacKay-DE15” codes at low SNR, and outperform
them at higher SNR values. Figure 1(c) also depicts that
optimized SF-LDPC codes can be decoded with a smaller
number of iterations, on average, compared with the other
DE optimized codes.

5. Conclusion

In this paper, we have proposed LDPC codes with
variable-node degrees following power-law distributions.
Theoretical results indicate that under the same conditions,
the threshold value of the proposed LDPC codes (called
scale-free LDPC or SF-LDPC codes) is slightly less than
that of the best-known LDPC codes. But the average
number of connections for SF-LDPC codes is significantly
smaller. We have also constructed SF-LDPC codes of
lengths 1008 and 504, with rate 0.5. We conclude that the
bit error rate and block error rate performances of the SF-
LDPC are comparable to and sometimes better than some
of the best-known codes. Moreover, the SF-LDPC codes
take fewer iterations to converge.
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