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Abstract—In a ring of coupled bistable oscillators, a
standing pulse wave appears when the coupling is weak.
This standing pulse wave becomes a propagating pulse
wave when the coupling strength exceeds a certain cirti-
cal value. We clarify this mechanism using bifurcational
analysis of a certain periodic solution.

1. Introduction

A study of propagating wave phenomenon in coupled os-
cillator systems is one of the familiar topics of research.
The existence of propagating pulse wave in the FitzHugh-
Nagumo equation, a model of neuronal system, is well
known[1]. In addition, various propagating wave phenom-
ena in several systems such as chaotic pulse [2], propaga-
tion of phase-inversion wave [3], etc. were investigated.
A basic question concerning these systems is the condition
under which propagating wave can emerge. It is known
as propagation failure phenomenon that propagating wave
fails to propagate below a certain critical coupling strength
[1].

In our previous study, we found the propagating pulse
wave in an inductor-coupled bistable oscillator system.
There exists a standing pulse wave for weak coupling case.
However, as the value of coupling strength becomes larger
than a certain critical value, a propagating pulse wave ap-
pears in some parameter region[4]. In this study, we focus
on the formation mechanism of propagating pulse wave.
We confirm numerically for 6 coupled oscillator case that
the heteroclinic cycle bifurcation of maps 1(= HCB) in-
duces the invariant circle corresponding to the propagating
pulse wave.

1The definition of heteroclinic bifurcation based on the heteroclinic
cycle can be seen in [5] in case of flow. In our case it is about Poincare
maps. So we make a new word “heteroclinic cycle bifurcation of maps
(= HCB)” to mention the bifurcation of Fig.4. Also, we call the situation
of Fig.4(b) the “critical heteroclinic cycle of maps (= CHC)”. Usually,
heteroclinic cycle of maps is structurally stable, but CHC is structurally
unstable.

2. Fundamental equation and its dynamics

The system equation of a ring of inductor-coupled
bistable oscillators can be written in the following with ref-
erence to [4] :

ẋi = yi

ẏi = −ε(1− βx2
i + x4

i )yi

−(1− α)xi + α(xi−1 − 2xi + xi+1)

, i = 1, 2, · · · , n, x0 = xN , x1 = xN+1,

(· = d/dt)

(1)

, where N is the number of oscillators. The xi denotes the
normalized output voltage of the i-th oscillator, yi denotes
its derivative. The parameter ε (> 0) shows the degree of
nonlinearity. The parameter α (0 5 α 5 1) is a coupling
factor; namely α = 1 means maximum coupling, and α = 0
means no coupling. The parameter β controls amplitude of
oscillation. Each isolated oscillator has two steady-states,
namely, no oscillation and periodic oscillation depending
on the initial condition.

The analysis of modes based on the averaging method or
perturbation method for weakly nonlinear cases was exten-
sively performed in the past [6, 7] . However, the solution
for non-weak nonlinear cases does not seem to be analyzed;
in fact, it is complicated including the propagating pulse
wave solution. In this paper, we analyze the propagating
pulse wave solution observed for non-weak nonlinear case.
The propagating pulse wave solution consists of several ad-
jacent oscillators oscillating with large amplitude, and the
part of large amplitude oscillation in the ring array prop-
agates with a constant speed [4]. Such propagating pulse
wave seems to be observed in an arbitrary number of cou-
pled oscillators 2. Hereafter, we will show the results for
the 6 coupled oscillator case. In particular, we will investi-
gate one of the mechanisms of the propagating pulse wave
formation.

2We confirmed the existence of the propagating pulse wave from the
N = 5 to N = 100 cases via computer simulation.
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Figure 1: A standing pulse wave (= a periodic solution)
occurring in the ring of 6-coupled oscillators. Initial condi-
tion: x1(0) = 2.0, y1(0) = 0.0 and xk(0) = yk(0) = 0.0, k =
2, 3, · · · , 6. Parameters: α = 0.05, β = 3.2 and ε = 0.36.

Figure 2: The node Ni with its corresponding saddle Si for
i = 1, 2, · · · , 6 showing the SN bifurcation in terms of α for
β = 3.2 and ε = 0.36. The curve (N2,S2) overlaps with the
curve (N6,S6), and (N3,S3) with (N5,S5), because they
are symmetrically-placed. Subtle structure around the tip
region surrounded by a square box is shown in Fig.3(a).

3. One of the onset mechanisms of propagating pulse
wave

In this system, there exists a certain kind of standing
pulse wave solution for small coupling strength α. The
standing pulse wave solution is a periodic oscillation, one
of which is shown in Fig.1. For simplicity, we fix ε = 0.36
and β = 3.2 throughout this paper. At first, we investi-
gate this type of standing pulse wave, and then the transi-
tion from the standing pulse wave to the propagating pulse
wave.

(a)

(b)

Figure 3: Subtle bifurcation diagram around the tip re-
gion surrounded by a square in Fig.2 for ε = 0.36 and
β = 3.2. The bifurcation points are as follows: αS N =

0.088501, αPF = 0.088328 and αc = 0.088302. The solid
curve denotes stable and the dotted curve denotes unstable
fixed point. (a)Actual bifurcation diagram. The notation
mD indicates that number of unstable direction of the fixed
point is “m”. (b) The 3D schematic diagram around the tip
region. The axis x̃ j denotes the stable direction of saddles
and the axis x̃k unstable direction of them. The axes x̃ j and
x̃k may not correspond to the actual state variables x j and
xk directly.

3.1. The standing pulse wave

Figure 1 shows one of the periodic solutions (the stand-
ing pulse wave) obtained from the initial condition: x1(0) =
2.0, y1(0) = 0.0 and xk(0) = yk(0) = 0, k = 2, 3, · · · , 6 for
α = 0.05. We choose α = 0.05 in order to realize weak cou-
pling so that there exists the standing pulse wave. Since this
system has rotational symmetric property (ring coupling
structure), other 5 periodic solutions obviously coexist for
the same parameters. We define Poincare section as y1 = 0
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3, and trace these periodic solutions with respect to α (be-
cause the characteristic features of the propagating pulse
wave mainly depends on coupling strength [4]). Since the
periodic solution becomes a fixed point on the Poincare
section, this point becomes a curve when α is varied. In
this manner, we can trace 6 periodic solutions as depicted
in Fig.2 [8]. The solid curves are mapped points corre-
sponding to the above mentioned stable periodic solutions,
namely the nodes (Ni, i = 1, 2, . . . , 6). The dotted curves
represent their corresponding saddles (Si, i = 1, 2, . . . , 6)4.

The node and the corresponding saddle coalesce at a cer-
tain value of α. This is called the Saddle-Node (SN) bifur-
cation point αS N . In this system, there are 6 pairs of (Ni,
Si) curves and they disappear simultaneously at the same
SN bifurcation point. Namely, the aligned structure of the
SN bifurcation points is formed at αS N + 0.088 in this case.
This is rough explanation of bifurcation diagram. In fact,
the tip region of each curve presents more sophisticated bi-
furcations as shown in Fig.3. This is explained in relation
to a formation mechanism of the propagating pulse wave in
the next section.

3.2. Propagating pulse wave based on the heteroclinic
cycle bifurcation of maps

Figure 3 (a) presents the magnified bifurcation diagram
in the square region of Fig.2. From this figure, it is noted
that before the SN bifurcation a pitchfork bifurcation (PF)
occurs. After the PF bifurcation, a stable node becomes
a saddle of index 1 and the corresponding saddle is an in-
dex 2 saddle. On the other hand, at the PF point two sad-
dles appear in the backward direction as shown in Fig.3(a);
namely, this is the subcritical PF bifurcation. Figure 3 (b)
presents the 3D schematic diagram for better understanding
the behavior of stable and unstable manifold of saddles in
Fig.4. As shown later, there exists a critical α = αc at which
the HCB can occur. This HCB yields a pair of invariant
circles (IC), which are the birth of propagating pulse wave
going to left and right. Figures 4 (a), (b) and (c) present
schematic diagrams representing the connection of Si, Ni
and S’i for i = 1, 2, · · · , 6 by unstable manifold (UM)5 for
3 cases of α < αc, α = αc and α > αc. For α < αc, UM
from S1 goes to N2 and UM from S’1 goes to N6 and vice
versa. Therefore, a stable node corresponding to the peri-
odic solution appears. For α = αc, UM from S1 goes to
S2 and UM from S’1 goes to S’6 and vice versa, namely
a pair of CHCs are formed. For α > αc the UM emanat-
ing from S1 goes to the upper IC and the UM from S’1
goes to the lower IC. These ICs are the propagating pulse
waves just after birth. Figure 5 demonstrates that the IC

3We take mapped points when the flow penetrates the hyper-plane
from + to −.

4This saddle is index 2, at least, for α = 0.05.
5The shape of UM is obtained, together with the compensation algo-

rithm, by repeating the mapping of which initial value is chosen on the
unstable eigenvector[9]. The method to obtain initial point on the unsta-
ble eigenvector is referred to (57) in [10].

(a) α < αc

(b) α = αc

(c) α > αc

Figure 4: Schematic diagram of the relation between the
nodes, saddles with their UM for three cases of α. The
square box represents each node and its corresponding sad-
dles are drawn as the black circle. The thin curves with ar-
rows represent the UM and the thick ones in (c) denote the
invariant circle (IC) corresponding to the propagating pulse
wave.

just after birth almost follows the CHC. This is a numerical
proof of the situation in Fig.4 (c). For other values of β in
3.14 5 β 5 3.25 we confirmed the similar HCB ensuring
generation of IC.

Practically, for 3.14 5 β 5 3.25, if the initial condition
is set on the periodic solution (standing wave solution) and
increase α, the periodic solution persists up to α = αPF and
for α > αPF the periodic solution jumps to the propagating

- 173 -



Figure 5: Superimposed presentation of the upper CHC in
Fig.4 (b) and IC (mapped points : ×) of the propagating
pulse wave just after birth for α = 0.089, β = 3.2 and
ε = 0.36. The curve represents the upper CHC connecting
6 saddles for N = 6.

wave solution (IC). On the contrary, if the initial condition
is set on IC for α > αPF and then decrease α, the IC disap-
pears at α = αc to become the periodic solution (standing
wave solution). Namely, a hysteresis phenomenon between
the standing wave solution and the propagating wave solu-
tion can be seen in αc 5 α 5 αPF .

4. Conclusions

In this paper, we elucidate the onset mechanism of the
propagationg pulse wave based on HCB for the ring of 6
bistable oscillators. Namely, there exists the standing pulse
wave (the stable periodic solution) for small coupling fac-
tor, and beyond a certain coupling factor, it bifurcates to be
the propagating pulse wave. It is confirmed for 6 coupled
oscillator case that the origin of the propagating pulse wave
is the critical heteroclinic cycle of maps (= CHC) formed
at the parameter near the saddle-node bifurcation point. On
the basis of these results, we make conjecture that the CHC
connecting N-saddles is one of the general routes of the
transition from the standing pulse wave to the propagating
pulse wave. In the near future, we will investigate the con-
jecture of HCB as the onset of the propagating pulse wave
for larger number of oscillator cases.
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