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Abstract—An artificial spiking neuron model which has
a piece-wise constant (ab. PWC) vector field and state-
dependent reset is introduced. Using the analysis tech-
niques of discontinuous ODEs, it is shown that the model
can reproduce 4 types of the typical neuron-like responses
(neurocomputational properties), the occurrence mecha-
nisms of which have qualitative similarities to those of
Izhikevich’s simple neuron model.

1. Introduction

Neurons exhibit various responses depending on stimu-
lation inputs and parameter values. According to [1, 2], 20
types of typical responses of neurons are called the most
fundamental neuroccomputational properties. Many math-
ematical models (e.g., Izhikevich’s simple neuronmodel
[1]-[3] and Hodgkin-Huxlay’s model [4]) have been stud-
ied intensively, where Izhikevich’s simple neuron model
can reproduce all the 20 types of typical responses of neu-
rons. However, since typical control parameters of these
mathematical neuron models are nonlinearities of ordinary
differential equations (ab. ODEs), straightforward analog
circuit implementations of these models [5]-[12] are some-
times cumbersome. Hence, as a hardware-oriented neu-
ron model, we have proposed a piece-wise constant (ab.
PWC) analog spiking neuron model which can be imple-
mented by a simple electronic circuit [13]. The dynamics
of the model is described by an ODE with PWC charac-
teristics together with a state-dependent reset. It has been
shown that the PWC analog spiking neuron model can re-
produce a variety of excitatory responses of neurons [13].
In this paper, It is shown that the model can reproduce typi-
cal neuron-like responses (i.e., phsic spiking, phasic burst-
ing, class 2 excitable , subthreshold oscillation), where oc-
currence mechanisms of these responses have qualitative
similarities to those of Izhikevich’s simple neuron model
[1, 2, 3]. Significances of this paper include the following
points. (1) Advantages of the PWC vector field include:
easy to implement by a compact electronic circuit, easy to
tune parameter values, and suitability for theoretical analy-
sis based on theories on discontinuous ODEs [14]. (2) The
neural prosthesis is a recent hot topic, where a typical ap-
proach is to prosthesize a damaged part of neural systems
by a digital processor [15, 16]. On the other hand, sensory
neurons should be prosthesized by analog electronic cir-
cuits since sensory neurons accept analog signals and it is
not so efficient to utilize digital processor neurons together

with analog-to-digital converters to implement them. Due
to the advantages in the previous point (1), the model will
be a good (compact and tunable) candidate for a sensory
neuron prosthesis as well as a hardware pulse-coupled neu-
ral network. (3) The model can be regarded as a general-
ized version of a PWC oscillator in [17]-[19]. However, the
oscillator is designed as an abstract chaotic oscillator and
cannot exhibit neuron-like responses.

2. Piecewise Constant Analog Spiking Neuron Model

A piece-wise constant (ab. PWC) analog spiking neu-
ron model [13] is introduced in Fig.1(a). The model con-
sists of two capacitors, two operational transconductance
amplifiers (ab. OTAs), a comparator, a monostable multi-
vibrator, an analog switch, an amplifier, an adder, and an
absolute value circuit. Fig.1(b) shows the characteristics of
the OTA: it outputs a positive (negative) current if the dif-
ferential voltage vε = v+ − v− is positive (negative). From
a viewpoint of neuron model, the capacitor voltages v and
u can be regarded as an membrane potential and a recov-
ery variable, respectively, as explained in the table in Fig.1.
Also, an input voltage Vin and a constant voltage VT can
be regarded as a stimulation input and a spiking thresh-
old, respectively. The constant voltage VT is also regarded
as a spike cut-off level [1]. If the membrane potential v
reaches the spiking threshold VT , the comparator (COMP)
triggers the monostable multivibrator (MM) to generate a
spike Y = E. The spike Y = E closes the analog switch S
for a short time, and then the membrane potential v is reset
to a constant value VB which is called a reset base. From a
viewpoint of neuron model, the spike Y = E is regarded as
a firing spike or an action potential as explained in the table
in Fig.1. The dynamics of the PWC analog spiking neuron
model is described by the following equation.{

Cv̇ = Iv(|v| + Vin − u)
Cu̇ = Iu(av − u)

if v < VT ,

v(t+) = VB if v(t) = VT ,

Iv(vε) =
{

I+v if vε > 0
−I−v if vε < 0 (1)

Iu(vε) =
{

I+u if vε > 0
−I−u if vε < 0

Y(t+) =
{

E if v(t) = VT

−E if v(t) < VT
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PWC spiking neuron Meaning as a neuron model
Capacitor voltage v Membrane potential
Capacitor voltage u Recovery variable
Input voltage Vin Stimulation input
Constant voltage VT Spiking threshold
Spike-train Y Output firing spike-train

Figure 1: PWC analog spiking neuron model. (a) Electrical
circuit model. COMP and MM represent the comparator
and the monostable multivibrator, respectively. (b) Charac-
teristics of the operational transconductance amplifier (ab.
OTA).

where ”˙” represents the time derivative, t+ represents
limε→+0(t+ε), I+v , I−v , I+u , I−u > 0 are assumed, and v(0) ≤ VT

is assumed. In the whole state space

S ≡ {(v, u)|v ≤ VT },

the following two borders are defined by the control volt-
ages of the two OTAs (see also Fig.2):

v-nullcline : Σv ≡ {(v, u)|u = |v| + Vin},
u-nullcline : Σu ≡ {(v, u)|u = av},

where ” ≡ ” represents the ”definition” hereafter. Since
the borders play the same roles as nullclines of a smooth
nonlinear ODE, the borders are called v-nullcline and u-
nullcline. The nullclines divide the whole state space S into
at most four subspaces having the following four vector
fields:

(v̇, u̇) =
V++ ≡ (I+v /C, I

+
v /C) if u < |v| + Vin and u < av,

V−+ ≡ (I−v /C, I
+
v /C) if u > |v| + Vin and u < av,

V+− ≡ (I+v /C, I
−
v /C) if u < |v| + Vin and u > av,

V−− ≡ (I−v /C, I
−
v /C) if u > |v| + Vin and u > av.

According to [13, 14], the dynamics of the state (v, u) on
the nullclines Σv and Σu can be categorized into sliding
mode and non-sliding mode (we also say ”without sliding
mode”). If the mode is categorized into the sliding one,

there exists some sliding vector fields on the nullclines Σv

and Σu. More detailed explanations of the sliding mode
dynamics of the PWC analog spiking neuron model [13] is
omitted in this paper due to the page length limitation.

3. Analysis of Typical Neuron-like Responses

In this section, we study 4 types of neuron-like responses
of the PWC analog spiking neuron model. Fig.2 shows
time waveforms and phase planes of the PWC analog spik-
ing neuron model. In Fig.2, v + Y ′ is used to show neuron-
like waveforms, i.e., spiking wave forms of v + Y ′ are re-
garded as action potentials, where

Y ′(t+) =
{

K if v(t) = VT ,
0 if v(t) < VT ,

(2)

and K is a parameter. Fig.3 shows time waveforms and
phase planes of Izhikevich’s simple neuron model de-
scribed by the following equation.{

v̇ = 0.04v2 + 5v + 140 − u + I
u̇ = a(bv − u) (3)

if v ≥ 30mV, then
{

v← c
u← u + d

We make comparisons between our PWC analog spiking
neuron model and Izhikevich’s simple neuron model as the
followings, where the parameters (C,VT ,K) of the PWC
analog spiking neuron model are fixed to (C,VT ,K) =
(0.01, 1.0, 5.0).

A. Phasic Spiking : In Fig.2(a), there exists a resting
state at first. Next the stimulation input Vin is increased,
and then the model generates a single spike. Finally, a rest-
ing state appeares again. This type of response is called the
phasic spiking [1, 2]. The above occurrence mechanism of
the phasic spiking is qualitatively similar to that of Izhike-
vich’s simple neuron model shown in Fig.3(a).

B. Phasic bursting : In Fig.2(b), there exists a resting
state at first. Next the stimulation input Vin is increased,
and then the model generates bursting spikes. Finally, a
resting state appeares again. This type of response is called
the phasic bursting [1, 2]. The above occurrence mecha-
nism of the phasic bursting is qualitatively similar to that
of Izhikevich’s simple neuron model shown in Fig.3(b).

C. Class 2 excitable : In Fig.2(c), there exists a resting
state at first. Next an stimulation input Vin is increased
gradually, and the equilibrium point of the resting state
loses by border-collision bifurcation [14] at the stimula-
tion input Vin = 0 (we call this border-collision as saddle-
node off invariant circle type border-collision bifurcation
[13] because the bifurcation has qualitative similarities to
saddle-node off invariant circle bifurcation [20]). Then
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Figure 2: Neuron-like responses of PWC analog spiking
neuron model. (a) Phasic spiking. The parameters are a =
0.5, I+v = 1.0, I−v = 0.1, I+u = 0.1, I−u = 0.1, VB = 0.0. (b)
Phasic bursting. The parameters are a = 5.0, I+v = 1.0, I−v =
1.0, I+u = 0.3, I−u = 0.3, VB = 0.6. (c) Class 2 excitable.
The parameters are a = 0.5, I+v = 1.0, I−v = 0.01, I+u = 1.0,
I−u = 0.1, VB = 0.6. (d) Subthreshold oscillation. The
parameters are a = −0.5, I+v = 1.0, I−v = 1.0, I+u = 2.5,
I−u = 2.5, VB = −0.0.
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Figure 3: Neuron-like responses of Izhikevich’s simple
model. (a) Phasic spiking. The parameters are a = 0.02,
b = 0.25, c = −65, d = 6. (b) Phasic bursting. The param-
eters are a = 0.02, b = 0.25, c = −55, d = 0.05. (c) Class 2
excitable. The parameters are a = 0.2, b = 0.26, c = −65,
d = 0. (d) Subthreshold oscillation. The parameters are
a = 0.05, b = 0.26, c = −60, d = 0.
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the PWC analog spiking neuron model suddenly begines
to generate spikes with a high spike frequency. This type
of response is called the class 2 excitable [1, 2]. The above
occurrence mechanism of class 2 excitable is qualitatively
similar to that of Izhikevich’s simple neuron model shown
in Fig.3(c).

D. Subthreshold oscillation : In Fig.2(d), there exists a
resting state at first. Next an excitatory pulse input Vin is
injected and the PWC analog spiking neuron model gener-
ates a single spike. After generating a spike, the PWC ana-
log spiking neuron model shows the oscillation in the sub-
threshold region. This type of response is called the sub-
threshold oscillation [1, 2]. The above occurrence mech-
anism of the subthreshold oscillation is qualitatively sim-
ilar to that of Izhikevich’s simple neuron model shown in
Fig.3(d).

4. Conclusions

We have introduced the piece-wise constant (ab. PWC)
analog spiking neuron model. It has been shown that,
the model can reproduce the typical neuron-like responses
(i.e., phasic spiking, phasic bursting, class 2 excitable, sub-
threshold oscillation), where the occurrence mechanisms
of these neuron-like responses have qualitative similarities
to those of Izhikevich’s simple neuron model. Future prob-
lems include: (a) more in-depth theoretical analysis of re-
sponses of the model and (b) synthesis of a network of the
PWC analog spiking neuron model and investigation of its
applications.

The authors would like to thank Professor Toshimitsu
Ushio of Osaka University for valuable discussions. This
work is partially supported by KAKENHI (21700253).
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