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Abstract—The factorial moments analyses are per-
formed to study the scaling properties of the dynamical
fluctuations of contacts and nodes in temporal networks
based on empirical data sets. The intermittent behaviors are
observed in the fluctuations for all orders of the moments.
It indicates that the interaction has self-similarity structure
in time interval and the fluctuations are not purely random
but dynamical and correlated. The scaling exponents for
contacts in Prostitution data and nodes in Conference da-
ta are very close to that for 2D Ising model undergoing a
second-order phase transition.

1. Introduction

Interactions in complex systems are not static but change
over time, which can be modelled in terms of temporal net-
works [1]. Temporal network consists of a set of contacts
(ni, n j, t), emphasizing on the time when node i and j have
a connection. The addition of time dimension provides a
new sight into the framework of complex network theo-
ry. In temporal networks, both structural properties and
spreading dynamics crucially depend on the time-ordering
of links.

The research of temporal networks has attracted great
attention and it mainly focuses on two major aspects from
the point view of time dimension. One is corresponding to
the strategy of time aggregation especially when the topo-
logical characteristics are more relevant than the tempo-
ral properties. The topological structure of temporal net-
work is achieved through aggregating contacts over a cer-
tain time interval and the temporal network is then repre-
sented as a series of snapshots of static graphs. Conse-
quently, many existing concepts and tools of static graphs
can be adopted to analyze temporal networks, since it is
usually easier to analyze static networks. For example, the
degree of a node ki(t) is described as the number of links
that it has to other nodes within the time window [t, t+∆t].
The error and attack strategies in static networks have been
applied to evaluate the temporal vulnerability [2], and so
on. In order to understand the structure of temporal net-
works, it plays a crucial role to choose an optimal time in-
terval ∆t to construct static graphs from temporal network-
s. Krings et al. studied the influences of time intervals
when aggregating the mobile phone network over time [3].
Holme analyzed three ways of constructing static snapshots
from temporal networks [4], but no candidate weighing out
as a best choice. It is now still an open question on how to

choose the time interval to represent temporal networks.
The other aspect is related to using dynamical process-

es to probe into the influence of time series on temporal
network. We should take into account the time-ordering of
each contact and the inter-event time between two consecu-
tive contacts. The inter-event time distribution in temporal
network follows a power-law, which is also called bursti-
ness [5]. Although it is recognized that time-ordering and
bursty characters have strong influences on the dynamical
processes of temporal networks, numerous studies have ap-
peared to arrive at contradictory results. Lambiotte et al.
had stressed that time-ordering and burstiness of contact-
s were critical in spreading process, which leaded to slow
down spreading [6]. In the work of Rocha et al, they con-
cluded that temporal correlations accelerated outbreaks [7]
in SI and SIR model. Miritello et al. demonstrated that
bursts hindered propagation at large scales, but group con-
versations favored local rapid cascades [8].

Despite the promoting results in temporal networks, this
field is still in its early stages about how temporal effect and
topological structure interplay and hence affect the dynam-
ical process. In this paper, based on empirical data sets,
we will investigate the scaling properties of the dynamical
fluctuations of contacts and nodes in temporal networks by
using the factorial moments. We are aiming at extracting
the fundamental properties from the large amount of da-
ta and revealing the influences of time effects on temporal
networks from a new perspective.

The rest of the paper is organized as follows. Section
II briefly introduces the method of factorial moments. In
Section III we give a brief description of the data sets and
present the corresponding results, especially the scaling
properties of fluctuations for contacts and nodes in the em-
pirical data sets. Conclusions are offered in the final sec-
tion.

2. Method of factorial moments

Temporal network consists of a sequence of contacts
(ni, n j, t), representing that node i and node j has a con-
tact at time t. The number of contacts characterizes the
frequency that individuals are connected with each other
and the number of nodes describe the activeness that indi-
viduals are involved. In this paper, factorial moments will
be used to study the dynamical fluctuations of contacts and
nodes in temporal networks and the scaling properties of
those fluctuations in the system.
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Factorial moments are originally introduced in nuclear
physics to study the multiplicity fluctuation of hadrons pro-
duced during the high energy collisions[9]. The fluctua-
tions and correlations in multiplicity distributions provide a
general and sensitive method to characterize the dynamical
interactions. Here we will focus on the multiplicity of con-
tacts and nodes in temporal networks. Consider the time
series of contacts (or nodes) y(t), where t is the time that
contacts happen and t ranges from 0 to T . We divide the
whole time range T into M equal bins (the remainders are
discarded). So the time interval in each bin is ∆t = T/M.
Within each bin window m (m = 1, 2, ...,M), denote the
number of contacts (or nodes) as nm. Of course, nm fluctu-
ates for different bin windows. To measure the fluctuations
and correlations, the q− th order factorial moment is intro-
duced as,

fq =
1
M

M∑
m=1

nm(nm − 1)...(nm − q + 1)

= ⟨nm(nm − 1)...(nm − q + 1)⟩. (1)

In factorial moments, f1 = ⟨n⟩ is the mean number of
contacts (or nodes) under a certain bin size, averaged over
all the bins m. Note that nm must be greater than q (nm > q)
in order to contribute to fq , and q is usually an integer. As
M increases, ∆t is decreased and the average multiplicity
⟨n⟩ in a bin decreases. This may lead to nm < q which is not
allowed. Thus high q corresponds to higher nm in the bin
under consideration, i.e., large fluctuations from ⟨n⟩ [10].

Normalized factorial moments are more generally used,

Fq =
fq
f q
1

. (2)

It can be proved that Fq can filter out the statistical fluctua-
tions. The method of factorial moments has been applied to
analyze different complex systems, such as multiplicity of
produced hadrons [11], human electroencephalogram and
gait series in biology [12, 13], financial price series [14],
critical fluctuations in Bak-Sneppen model [18], spectra
analysis of complex networks [15], to name a few. Spe-
cially it indicates that the fluctuations in the system have
self-similarity when Fq has a power-law dependence on the
bin size M.

Fq ∝ Mαq , αq > 0. (3)

This phenomenon is referred to as the intermittency. Inter-
mittency basically means random deviations from smooth
or regular behavior. Intermittent behavior is expected in a
variety of statistical systems at the phase transition point
of the second-order type. Hence the existence of intermit-
tency suggests that the fluctuations are not purely Poisson
distribution, but the indication of dynamical processes in
the fluctuations.

3. Results and discussions

In this paper the factorial moments analyses are per-
formed to uncover the scaling properties of the fluctuations
in temporal networks based on the following two empirical
data sets.

Prostitution: The data set consists of sexual contacts
between sex buyers and sellers from a Brazilian web
forum [16]. The time resolution is 1 day and the whole
time range is T = 2232 days.

Conference: The data set was collected at a 3-day con-
ference from face-to-face interactions between con-
ference participants. A contact is recorded every 20-
second intervals if two individuals are within range of
1.5m [17]. The whole time range is T = 212340 sec-
onds.

We now divide the whole time range T into M bins and
count the number of contacts and nodes in each bin win-
dow. Calculate fq and Fq according to Eq. (1) and (2),
respectively. It is noticed that fq is averaged over all bins
(known as the horizontal average).

Figure 1 presents the log-log plot of Fq as a function of
M for contacts (open circles) and nodes (filled circles) in
Prostitution data. With M ranging from about 3 to 60 bins,
it means that the time interval ∆t extends approximately
from 30 to 750 days. We find that ln Fq increases linearly
with ln M for both contacts and nodes by q varying from
2 to 6. The slopes of nodes are a little larger than that of
contacts. The same phenomena have also been observed in
Conference data in Fig. 2.

The increase of bin size M means that the fluctuations of
arbitrary sizes can appear in the system, and consequent-
ly leading to the growth of factorial moment Fq with M.
The scaling relationship between Fq and M, Fq ∼ Mαq ,
indicates the existence of intermittency. As stated in Ref.
[14], for uncorrelated Poissonian or Gaussian distributions,
Fq = 1 for all orders q; whereas for correlated contacts or
nodes distributions, Fq should increase with the growth of
bin size M. Hence the intermittent behavior implies that
the fluctuations of contacts and nodes in both Prostitution
and Conference data have self-similar structures and the
fluctuations are not random Poisson distribution but have
dynamical and correlated behaviors inside.

Further investigations have been performed on Fq and
F2. The scaling between Fq and F2 is more general than
intermittency, which could be true even under the condition
that intermittency does not exist.

We plot Fq as a function of F2 on the log-log scale for
Prostitution and Conference data sets in Fig. 3 and 4, re-
spectively. The scaling relationship between Fq and F2 can
be clearly observed in both figures.

Fq ∝ Fβq

2 , (4)
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Figure 1: Log-log plot of factorial moments Fq as a func-
tion of bin size M for Prostitution data with q varying from
2 to 6. (a) The fluctuations of contacts (open circles). (b)
The fluctuations of nodes (filled circles). The symbols are
the same below.
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Figure 2: Log-log plot of Fq as a function of M for Confer-
ence data with the range of q from 2 to 6. (a) for contacts;
(b) for nodes.

where βq = αq/α2 for the case of intermittency. We are
interested more in the dependence of βq on q. The plot of
βq as a function of (q − 1) is presented on a log-log scale
in Fig. 5 for Prostitution data and in Fig. 6 for Conference
data. There is a remarkably linear relationship between βq

and (q − 1) for all q. Now one has

βq ∝ (q − 1)γ. (5)

The linear fits are also plotted in the figures. In Prosti-
tution data, γ are 1.341 for contacts and 1.104 for nodes.
In Conference data γ are 0.992 and 1.345 for contacts and
nodes, respectively. It should be recognized that the power-
law relationship in Eq. (5) implies that the exponents βq are
independent of bin size M. It suggests a common feature
of scaling invariance in temporal networks.

It is known that γ is approximately 1.3 for 2D Ising mod-
el undergoing a second-order phase transition [19]. The ex-
ponents γ of contacts in Prostitution data (γ = 1.341) and
of nodes in Conference data (γ = 1.345) are very close to
this value.

4. Conclusions

The factorial moments analyses are performed to study
the scaling properties for fluctuations of contacts and nodes
in temporal networks based on empirical data sets. The
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Figure 3: Log-log plot of Fq as a function of F2 for Prosti-
tution data. (a) for contacts; and (b) for nodes.
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Figure 4: Log-log plot of Fq as a function of F2 for Con-
ference data. (a) for contacts; and (b) for nodes.

phenomena of intermittency Fq ∼ Mαq have been observed
for all orders q in the fluctuations of contacts and nodes
for both Prostitution and Conference data sets. The result
indicates that the system has self-similar structure and the
fluctuations are not purely random, but have dynamical and
correlated behaviors embedded in the system. A more gen-
eral scaling relationship between Fq and F2 has also been
presented, Fq ∼ Fβq

2 . We further find that βq scales with q
as βq ∼ (q − 1)γ. The exponents γ for nodes in the Prosti-
tution data and for contacts in the Conference data are very
close to that for 2D Ising model. The other exponents γ are
not.

Still, there are some issues to be addressed. First, what
is the driving mechanism(s) behind these scaling proper-
ties of fluctuations in temporal networks? Second, why are
some scaling exponents close to that of Ginzburg-Landau
second-order phase transition? Are they belong to the same
universal class? All these topics cannot be covered in this
paper and will be discussed later.

The scaling invariances of fluctuations shed light on the
temporal correlations of contact series and provide a new
sight into understanding the influence of time dimension in
temporal networks.
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Figure 5: Scaling properties between βq and (q − 1) for
Prostitution data. The scaling exponents are about: (a)
1.341 for contacts; and (b) 1.104 for nodes.
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