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Abstract—We study the structural variation of networks
formed by connecting Standard & Poor’s 500 (S&P500) stocks
that were traded from January 1, 2000 to December 31, 2004. The
construction of the network is based on cross correlation between
the time series of the closing prices (or price returns) over a fixed
trading period and takes a simple winner-take-all approach for
establishing connections between stocks. The period over which
the network is constructed is 20 trading days, which should be
long enough to produce meaningful cross correlation values, but
sufficiently short in order to avoid averaging effects that smooth
off the salient fluctuations. A network is constructed for each 20-
trading-day window in the entire trading period under study. The
window moves at a 1-trading-day step. The power-law exponent
is determined for each window, along with the corresponding
mean error of the power law approximation which reflects how
closely the degree distribution resembles a scalefree distribution.
The key finding is that the scalefreeness of the degree distribution
is disrupted when the market experiences fluctuation. Thus, the
mean error of the power-law approximation becomes an effective
indicative parameter of the volatility of the stock market.

I. INTRODUCTION

Complex network models have been used recently for study-
ing the correlations of stock prices [1]–[8]. In our companion
paper [9], we have introduced a method for constructing a
full network, without applying specific filtering procedure to
reduce complexity, that can be used to characterize the inter-
dependence of the stocks. This method has been used to
produce complex networks from time series of closing prices,
price returns and trading volumes [9]. Such stock networks
have been used to study how stocks are connected and the
structure of the interconnections. However, the dynamics of
the networks has not been exploited for detailed study of the
way the stock market varies as time elapses, and in particular
the relationship between the market fluctuation and the time-
varying structures of the stock networks.

In this paper we study the variations of the network prop-
erties and attempt to relate such variations with the market
fluctuation. In particular, we will base our study on the Stan-
dard & Poor’s 500 (S&P500) stocks such that the networks
constructed from these stocks can be consistently compared
with the fluctuation of the S&P500 index [11], [12]. Basically
we consider cross correlation between the closing prices (or
price returns) of the S&P500 stocks over a period of 20 days,
and construct networks by connecting stocks that are highly
correlated. The networks generated have been found to exhibit
a scalefree degree distribution. In this paper, we construct
networks for each 20-day window over the entire period from
January 1, 2000 to December 31, 2004. A snapshot of the
network is taken for each window (T = 20 days), and the

window moves along the time scale. Thus, effectively, we are
taking snapshots of the network of stocks at 1-trading-day
intervals, and the variation of the network can thus be studied
in terms of the variation of the parameters as time elapses.

We will focus on the degree distribution of the network. By
evaluating the mean error of the power law approximation,
we quantify the resemblance of the degree distribution to a
scalefree distribution, and we compare this property with the
market fluctuation in terms of stock index volatility which
is defined as the incremental change of the average stock
index. Our main objective is to study how the scalefreeness
of the network is related to the performance of the stock
market. As will be shown in this paper, the scalefreeness
of the degree distribution gives a very strong indication of
market fluctuation. This fundamental finding was not reported
previously.

In Section II, we give a quick review of the construction
of complex networks based on cross correlations of the
time series of stock prices. In Section III, we illustrate the
construction of market variation time series. In Section III-
B, we examine the dynamics of the networks by examining
the variations of the network parameters. In Section IV, we
examine on the variation of scalefreeness of the network.
Finally we give some conclusions in Section V.

II. REVIEW OF NETWORK CONSTRUCTION

We consider a network of 460 nodes corresponding to the
S&P stocks that were traded between January 1, 2000 to
December 31, 2004. For each pair of stocks (nodes), we will
evaluate the cross correlation of the time series of their daily
closing prices and daily price returns. Thus, two networks
can be constructed, one corresponding to closing prices and
the other to price returns.

Let pi(t) be the closing price of stock i on day t. Then, the
price return of stock i on day t, denoted by r i(t), is defined
as

ri(t) = ln
[

pi(t)
pi(t − 1)

]
(1)

Suppose xi(t) and xj(t) are the daily prices or price returns
of stock i and stock j, respectively, over the period t = 0 to
N − 1. We now compare the two time series with no relative
delay. In other words, xi and xj are compared from i = 0
to N − 1 with no relative time shift. The cross correlation
between xi and xj is given by [10]

cij =
∑

t [(xi(t) − xi)(xj(t) − xj)]√∑
t(xi(t) − xi)2

√∑
t(xj − xj)2

(2)
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Fig. 1. Degree distribution of S&P500 closing price network formed by
connection criterion based on cross correlation for ρ = 0.9.

where xi and xj are the means of the time series and the
summations are taken over t = 0 to N − 1.

In defining our criterion for connecting a pair of nodes, we
need a threshold value for the cross correlation. Since cross
correlation is a measure of similarity and its value is between
0 and 1, we simply choose a positive fractional value as the
threshold. Suppose the threshold is ρ. Then, the connection
criterion for stock i and stock j is

cij > ρ. (3)

We have constructed the closing price network and the price
return network for the period between January 1, 2000 to
December 31, 2004. Scalefree degree distribution has been
found and the power-law exponent is about 0.6 to 0.87 for
ρ = 0.8 to 0.9. Fig. 1 shows the distribution for the closing
price network for ρ = 0.9. A comprehensive set of results for
the entire US stock market can be found in Tse et al. [9].

Now suppose we construct a network over a period of N =
20 days, initially from t = 0 to t = 19. As we advance in
time, we can construct networks for all 20-day periods, i.e.,
from t = 0 to t = 19, from t = 1 to t = 20, from t = 2 to
t = 21, from t = 3 to t = 22, etc. until all data are exhausted.
Essentially, we are taking snapshots of the network at 1-day
intervals.

III. STOCK MARKET FLUCTUATION

The network constructed from the time series within a
particular 20-day window basically reflects the stock market
internal structure for the 20-day period concerned. The series
of networks as time elapses thus provides information about
the structural change of the network over time. In other words,
we are able to capture how the network parameters and struc-
ture change as time elapses, and in the following we attempt to
compare these changes with the way the market fluctuates. Our
metric for market fluctuation is the average index volatility,
which will be defined in the following subsection.

A. Average Index Volatility

In order to measure the stock market fluctuation over a time
interval, we define an average index volatility based on the

1600

1400

1200

1000

800
13-10-200426-12-200313-3-200328-5-20023-8-200117-10-20001-3-2000

S&
P5

00
 in

de
x

0.01

0.005

0
13-10-200426-12-200313-3-200328-5-20023-8-200117-10-20001-3-2000

A
IV

0.008

0.006

0.004

0.002

0
13-10-200426-12-200313-3-200328-5-20023-8-200117-10-20001-3-2000

A
IV

’

Fig. 2. Time series of S&P500 index, average index volatility (AIV), and
low-pass filtered average index volatility (AIV′).

variation of the average index value over an interval of T
days. A time series of the stock market fluctuation can thus
be obtained as the window moves. To be comparable with the
market internal structure variation, the same window size T
and step of movement T−δT should be taken, where δT is the
overlapping period between two consecutive time windows.

Consider a stock index whose value is I(t) at time
t. The original time series is divided into M windows:
W1, W2, ..., WM .
Average Index Volatility (AIV) is defined as the fractional

change of the average index values of two consecutive time
windows:

AIV(t) =
| 〈I(t)〉i+1 − 〈I(t)〉i |

〈I(t)〉i
(4)

where 〈I(t)〉i is the average index value in window Wi, i.e.,

〈I(t)〉i =
∑T−1

k=0 I(ti + k · ∆t)
T

(5)

where ti is the starting time point of window Wi.
The absolute value of the difference is used here because

significant fluctuations of the stock index are usually caused by
synchronized stock price movement in one direction, upward
or downward.

Fig. 2 shows the time series of AIV in the studied period. To
smooth out the spikes in the AIV time series, we calculate the
value of each point as the average of its neighboring nodes,
resulting in AIV′, which is effectively the low-pass filtered
version of AIV.

B. Market Fluctuation and Network Properties

In this subsection, we construct networks for the S&P500
stocks that were traded from January 1, 2000 to December
31, 2004. The time variations of some network parameters are
captured using the moving 20-day window network described
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TABLE I

CROSS CORRELATIONS BETWEEN AIV′ AND NETWORK PARAMETERS.

Cross correlation AIV′ and K AIV′ and C AIV′ and d AIV′ and D AIV′ and γ AIV′ and fitting error

Closing price network 0.612 0.572 -0.470 -0.262 -0.475 0.605
Price return network 0.303 0.339 -0.309 -0.263 -0.308 0.358
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Fig. 3. Times series of AIV′ and parameters of the closing price network.
K is average degree, C is average clustering coefficient, d is average shortest
distance and D is diameter. Their cross correlations are given in Table I.

in the foregoing. Specifically, closing price and price return
time series are analyzed with window size T = 20 and δT =
19. Time series of network parameters such as average degree
(K), average cluster coefficient (C), average shortest length (d)
and diameter (D) are computed and shown in Figs. 3 and 4.
Their correlations with the AIV′ time series are also calculated
and given in Table I.

From Table I, Figs. 3 and 4, we see that K and C are
closely correlated with AIV′, whereas d and D are much less
correlated with AIV′. This indicates that when the market
fluctuation is fierce, the market internal structure becomes
highly interwoven, resulting in an increase in the edge number
and clustering coefficient.
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Fig. 4. Time series of AIV′ and parameters of the price return network. K
is average degree, C is average clustering coefficient, d is average shortest
distance and D is diameter. Their cross correlations are given in Table I.

IV. MARKET FLUCTUATION AND NETWORK STRUCTURE:
DISRUPTION OF SCALEFREENESS

Variation of the network structure is particularly interesting.
As mentioned earlier, the degree distributions for the networks
constructed from the closing prices and price returns have
been found to be scalefree [9]. In this section we examine
the variation of the power-law exponents (denoted by γ) and
the corresponding fitting error as time elapses, again using
the moving 20-day window network, and evaluate their cross
correlations with AIV′. See Table I for numerical results.
Moreover, our study has shown a rather striking phenomenon,
which relates to the disruption of the scalefree structure of the
network under fierce market fluctuation.

By assuming the power law degree distributions of the
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Fig. 5. Time series of AIV′ and power-law exponent γ for closing price
network and price return network.
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Fig. 6. Time series of AIV′ and power-law exponent fitting error. Large fitting
error reflects poor “scalefreeness” approximation of the network structure.
Correspondence is evidenced between market fluctuation and the disruption
of scalefree structure.

constructed 20-day window networks, we apply the least mean
square fitting method on the cumulative degree distributions
of these networks to obtain the power law exponents and the
corresponding fitting errors.

Clearly the fitting error is a measure of how close the empir-
ical distribution is to the theoretical power-law distribution. If
the degree distribution deviates significantly from the power-
law distribution, the fitting error becomes large. Therefore,
we expect the fitting error to reflect the scalefreeness of
the network whose power-law degree distribution is being
approximated.

As can be seen in Fig. 5, the variation of the power-law
exponent γ has no observable resemblance to that of AIV ′ for
both closing price and price return networks. However, from
Fig. 6, the variations of the fitting errors are found strongly
correlated to the variation of AIV ′, especially for closing
price network. This clearly shows that the scalefreeness of the
network is an important health-check indicator. The occurrence
of spikes in fitting error variation corresponds to disruption of
scalefreeness of the network, which in turn correlates strongly
with fluctuation of the stock market.

V. CONCLUSION

In this paper, we study the structural variation of networks
formed by connecting S&P500 stocks based on cross corre-
lation. The network is examined in a 20-day window, and
as the window advances in time, we effectively capture the
variation of the network properties including some network
parameters and the scalefree structure. It has been shown that
the market fluctuation, measured in terms of average index
volatility, is strongly correlated with the scalefree structure of
the network. Specifically we have shown that the scalefree
structure, while being the default structure, is disrupted under
fierce market fluctuation. It can therefore be concluded that
the level of resemblance of scalefree structure of the stock
network is an indicator of the normality of the market. An
appropriate quantitative measure is the fitting error of the
power-law exponent whose time series has been found highly
correlated with that of the average index volatility.
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