
Architecture of The Next Generation Real Time CNN Processor: RTCNNP-v2

Evren Cesur†, Nerhun Yildiz† and Vedat Tavsanoglu†

†Dept. of Electronics and Communications Engineering, Yildiz Technical University
Barbaros Bulvari, 34349, Besiktas, Istanbul, Turkey

Email: nerhuny@yildiz.edu.tr, ecesur@yildiz.edu.tr, tavsanav@yildiz.edu.tr

Abstract—This paper is the continuation of our previ-
ous work reported in [1], where the local control structure
of the Second–Generation Real–Time Cellular Neural Net-
work Processor (RTCNNP-v2) was covered. The system
is primarily designed for high resolution, high speed real–
time video image processing. In this paper the block di-
agram of the new processor and an improvement over the
local control structure are presented. The proposed struc-
tures are coded in VHDL and realized on an FPGA.

1. Introduction

Standard Cellular Neural Network (CNN) architecture
is a two dimensional array of parallel processors [2]. In
analog implementations the processing elements are neu-
ral cells which are organized as two dimensional spatial
grids with temporal analog memory nodes. Spatial inter-
connections of the neighboring neurons define the spatio-
temporal dynamics of the grid. The output is taken from a
non-linear activation function which vary for different ap-
plications [3].

While the analog architecture has many benefits like
high speed and low power dissipation, digital emulation
methods are becoming more feasible as the digital tech-
nology tends to be faster and cheaper. Different CNN emu-
lation infrastructures are proposed in the literature such as
FPGAs, ASICs, DSPs, GPUs, etc.. Among the alternatives
the FPGAs are preferred for our implementation, as their
speed is comparable with ASICs, regularity is similar to
the GPUs, and they are highly parallel, reconfigurable and
reusable [4], [5].

This paper is the continuation of [1] where the first de-
sign specifications of the Second–Generation Real–Time
Cellular Neural Network Processor RTCNNP-v2 are pro-
posed. The general structure of the design is based on the
first–generation processor, RTCNNP-v1 [6]. The system is
designed as a real–time, high speed, high resolution video
processing array.

First a brief mathematical overview of the CNN model
used in both RTCNNP versions is given. Then the architec-
ture and the control structure of the processor array is pre-
sented. Finally the FPGA realization results are discussed.

2. Mathematical Overview

Mathematical model of the CNN depends on the number
of spatial dimensions, activation function, number of lay-
ers, etc.. Although the proposed architecture is capable of
processing many variations of the CNN with some modifi-
cations and adjustments, the simpler two dimensional, sin-
gle layer, space invariant CNN model using saturated linear
activation function is used for simplicity [3].

2.1. Continous–Time CNN Model

The mathematical model of the continuous–time CNN is
defined with the state equation

dxi j(t)
dt

= −xi j(t) + A©∗ Yi j(t) + B©∗ Ui j + zi j, (1)

yi j(t) = f (xi j(t)) = 0.5
(∣∣∣xi j(t) + 1

∣∣∣ − ∣∣∣xi j(t) − 1
∣∣∣)

where xi j is the state, yi j is the output, zi j is the thresh-
old, Yi j is the translated masked output, Ui j is the trans-
lated masked input of the i j’th cell, A is the feedback and B
is the feed–forward cloning templates, ©∗ is the template–
dot–product operator, i and j are the index variables of the
neural cell.

2.2. Discrete–Time and Full Signal Range CNN Models

The discretization of (1) with forward–Euler approxima-
tion

dxi j(t)
dt

�
xn+1

i j − xn
i j

Ts
(2)

yields

xn+1
i j = xn

i j + Ts

(
−xn

i j + A©∗ Yn
i j + B©∗ Ui j + zi j

)
. (3)

Although direct implementation of (3) is possible, Full
Signal Range (FSR) CNN model is easier to implement [7].
The FSR model is obtained by taking xn

i j = yn
i j in (3) as

xn+1
i j = (1 − Ts)yn

i j + TsA©∗ Yn
i j + Ts(B©∗ Ui j + zi j). (4)

This equation can be written as

xn+1
i j = Ā©∗ Yn

i j + B̄©∗ Ui j + z̄i j (5)

where

Ā©∗ Yn
i j = (1 − Ts)yn

i j + TsA©∗ Yn
i j,

B̄ = TsB, z̄i j = Tszi j.

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 153 -



2.3. Decomposition of the CNN Model

In equation (5) the term

gi j = B̄©∗ Ui j + z̄i j (6)

is calculated only once for each frame and used as a con-
stant in every Euler iteration

xn+1
i j = Ā©∗ Yn

i j + gi j. (7)

The equations (6) and (7) can be mapped to B–Processing
Unit (BPU) and A–Processing Unit (APU) respectively.
The computation flow in time can be given as

BPU = gi j = B̄©∗ Ui j + z̄i j

APU(1) = x1
i j = Ā©∗ Y0

i j + BPU

APU(2) = x2
i j = Ā©∗ APU(1) + BPU

...

APU(N) = xN
i j = Ā©∗ APU(N-1) + BPU (8)

where N is the total number of Euler iterations. In short
each Euler iteration is carried out by a different processor.
The computed state is passed through the activation func-
tion at the output of each processor before entering to the
next one. The initial condition Y0

i j is either a constant or
the input image for the most CNN algorithms.

3. Structure of The RTCNNPv2

The system consists of a video source, video decoder,
FPGA, video encoder and a video sink (Figure 1). The
video source can be any analog (VGA) or digital (DVI,
HDMI, etc.) progressive video stream. The video sink may
also be any analog or digital monitor, TV, etc. that accepts
progressive video stream.

Figure 1: Block diagram of the system.

3.1. General Structure

A feed–forward video processing array is embedded in
an FPGA that emulates the CNN (Figure 2). Video input
block accepts control signals from the video decoder and
translates them for the video processing array. Similarly,
the video output block translates the control signals accord-
ing to the video sink specifications.

Video processing array is an array of BPU and APU pro-
cessors. The flow is organized according to (8). The BPU
result is propagated through APUs. Each APU takes the re-
sults of the previous APU and the BPU as inputs and gives
the new APU and the old BPU results to the next APU.

Figure 2: Block diagram of the FPGA implementation.

BPU and APU processors are designed as a single pro-
grammable Processing Unit (xPU) (Figure 4). APU/BPU
input configures the processor as BPU or APU. clk, clka
and clkp clocks are the processing, programming and
pixel clock respectively. data in, const in, data out and
const out are the data inputs and outputs. Their function-
ality depends on the xPU type, BPU or APU. sdata in
and sdata out are the serial programming input and out-
put respectively. hframe in, hframe out, vframe in and
vframe out signals are the control signals that control the
xPUs and propagate through APUs.

3.2. Local Control Structure

The main problem of controlling a processor array is the
complexity of the central control unit. Every address input
and every multiplexer select signal of each BPU and APU
should be controlled independently and synchronously.

For 1–neighborhood CNN, consider the optimized and
non–optimized data RAM structures in three consecutive
APUs (Figure 3). The non–optimized memory structure is
easier to control as the pixels at the same column are be-
ing processed by the processors. The optimized memory
structure consumes less RAM in exchange for the control
complexity as every control signal of each processor is dif-
ferent from one another. Furthermore, the control signals
will be affected if the internal structure of the processors or
number of iterations change.

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7
n-1 n-1 n-1
n n n

n+1 n+1 n+1
n+2 n+2 n+2
n+3 n+3 n+3
n+4 n+4 n+4
n+5 n+5 n+5
n+6 n+6 n+6

APU 1 APU 2 APU 3

→ →

(a) Non–optimized memory structure

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7

m
-3

m
-2

m
-1 m

m
+

1
m

+
2

m
+

3
m

+
4

m
+

5
m

+
6

m
+

7

n-1 n-1 n-1
n n n

n+1 n+1 n+1
n+2 n+2 n+2
n+3 n+3 n+3
n+4 n+4 n+4

APU 1 APU 2 APU 3

→ →

(b) Optimized memory structure

Figure 3: Memory usage of consequent APUs (light gray),
and pixels that are being processed (dark gray).

As seen from our previous processor RTCNNP-v1, the
Block RAMs (BRAMs) and multipliers are the bottlenecks
of such FPGA implementations and only about 30% of the
logic blocks are used beside them [6]. This fact suggests

- 154 -



Figure 4: Simplified block diagram of the xPU.

that there are plenty of logic elements to use in the proces-
sors. Consequently, a local control structure is proposed
instead of a huge, complex and non–flexible central con-
trol unit [1].

There are two control signals that control each xPU:
horizontal frame signal hframe and vertical frame signal
vframe. There is a blank area around the real video signal
defined by the video standards. In this case there are nine
different areas on the frame (Figure 5). hframe and vframe
control signals define not only the visible area, but also de-
fine starting and ending points of the frame and lines, re-
quired for control. Video input block generates these con-
trol signals and controls the BPU, BPU propagates these
signals according to its latency and control the first APU,
and so on. Finally video output block receives these sig-
nals and translates them to standard video control signals
of DVI, VGA, etc..

Figure 5: Visible and blank areas of standard video signals,
and the definition of the hframe and vframe control signals.

Data and constant RAMs are optimized as seen in Fig-
ure 3b. They generate their own addresses, but reset and
enabled by the local control. The RAM structure looks like
circular buffers or shift registers from the functional per-
spective. There is also a boundary condition generation
block that passes the input data or the boundary condition
to the data RAM.

Frequency of the processing clock clk is obtained by
multiplication of the pixel clocks clkp with a positive in-
teger. By making the processing clock faster means less
multiplier resources may be used, e.g. if clock frequency
multiplier is 3, 3 multipliers are enough to calculate 9 mul-

tiplications in 3 clocks instead of 9 multiplications in 1
clock. clka is the auxiliary clock used for serial program-
ming of the template RAM, boundary condition, etc.. The
serial programming signal is also propagated through the
processors in order to avoid long global interconnections.

The data and constant outputs are defined as

data out = data in,

const out = data in©∗ B̄ + const in

for the BPU. The data output is the initial condition of the
first APU, which is the input pixel in many cases, and the
processed data is the constant input of the first APU. On
the other hand, for APUs

data out = data in©∗ Ā + const in,

const out = const in

as the processed data is the next APU’s data input, and the
constant output is the BPU result that propagates through
the APUs.

4. FPGA Implementation Results

The proposed system is codded in VHDL and partially
implemented on a high–end Altera R© Stratix c© IV GX 230
FPGA. The unimplemented part is the serial programming
feature. Template and boundary conditions are entered di-
rectly into the VHDL code and fixed during the synthesize
operation.

Templates of the Global Connectivity Detection is cho-
sen for the implementation as all synaptic weights are non–
zero and the algorithm is suitable for prototyping [9]. The
templates and bias are

Ā =

 6 6 6
6 9 6
6 6 6

 , B̄ =

 −3 −3 −3
−3 9 −3
−3 −3 −3

 , z̄ = −4.5

(9)
which are represented with signed 16-bits. The input and
the intermediate states are chosen to be 8-bits, and the BPU
output is propagated as 16-bits.

- 155 -



Table 1: Resource usage of the prototype.
Blocks Combinational ALUTs Dedicated Logic Registers Block Memory (Kb) DSP 18-bit Elements

One xPU 221-380 (0.1-0.2%) 370-491 (0.2-0.3%) minimum 8 (0.6%) 6 (0.5%)
100 xPUs 23635 (12.9%) 35651 (19.6%) 871 (67.6%) 600 (46.6%)
Glue logic 1072 (0.6%) 668 (0.4%) 0 (0%) 0 (0%)

Total 24707 (13.5%) 36319 (19.9%) 871 (67.6%) 600 (46.6%)

The properties of the test video signal are Full
HD 1080p@54Hz (1920x1080) with reduced blanking
134 MHz pixel clock frequency. The clock frequency mul-
tiplier is 2 that gives 268 MHz processing clock that is eas-
ier to synthesize with little or no further optimization. 99
Euler iterations are embedded in the FPGA, hence 99 APUs
and 1 BPU resides in the prototype (100 xPUs).

The system is fully pipelined. The throughput of the sys-
tem is the same as its input. The latency is about 200 lines
of a video frame for 100 iterations, which corresponds to
3.5 ms for the video properties given above.

Resource usage statistics are given in Table 1. The num-
ber of multipliers used in each xPU should be even due to
the architectural limitations of the FPGA. Hence even if 5
multipliers are sufficient to do 9 multiplications in 2 clock
cycles in theory, the architecture of the FPGA forces the
usage of 6 multipliers.

5. Conclusion

Structure of the next generation RTCNNP-v2 is pre-
sented with more details. The structure is also codded in
VHDL and a prototype is realized on an FPGA. Only se-
rial configuration feature is not implemented. Central ad-
dress and control generation is not necessary as each block
controls the next block in a synchronous pipelined manner.
The local control design has proved to make the processor
array fast, reconfigurable and reusable.

It is also worth to state that this is the fastest CNN im-
plementation for the time being that even outperforms the
analog CNN chips in many algorithms. Although analog
CNN makes the processing in almost zero time, video in-
put/output is their primary bottleneck. This design targets
specifically the input/output data bandwidth problem. 100
CNN iterations of the 54 Frames Full HD 1080p video sig-
nal means that 100 billion Multiply–ACcumulate (MAC)
operations or 200 billion total additions and multiplications
are done in one second. It means that the system has 1/5’th
the computational power of a supercomputer.

Finally this design is implemented on a high-end FPGA
for benchmark purpose. It is possible to do downscaling in
order to fit the design in a smaller FPGA with few changes.

Acknowledgment

This research was supported by The Scientific and Tech-
nological Research Council of Turkey — TÜBİTAK under
project number 108E023.

References

[1] N. Yildiz, E. Cesur and V. Tavsanoglu, “A New Con-
trol Structure For The Pipelined CNN Processor Ar-
rays,” 12th IEEE CNNA — International Workshop on
Cellular Nanoscale Networks and their Applications,
Berkeley, US, February 2010.

[2] L.O. Chua and L. Yang, “Cellular Neural Networks:
Theory”, IEEE Transactions On Circuits and Systems,
Vol. 35, No. 10, October 1988.

[3] L.O. Chua and T. Roska, “Cellular Neural networks
and Visual Computing,” Cambridge University Press,
UK, 2002.

[4] Z. Nagy and P. Szolgay, “Configurable multilayer
CNN-UM emulator on FPGA,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Ap-
plications, June 2003.

[5] J. Javier Martı́nez, F. Javier Toledo, E. Fernández and
J. M. Ferrández, “A retinomorphic architecture based
on discrete–time cellular neural networks using recon-
figurable computing,” Neurocomputing, 2008.

[6] K. Kayaer and V. Tavsanoglu, “A New Approach to
Emulate CNN on FPGAs for Real Time Video Process-
ing,” 11th International Workshop on Cellular Neural
Networks and their Applications, Santiago de Com-
postela, Spain, July 2008.

[7] S. Espejo, A. Rodriguez-Vázquez, R. Domı́nguez-
Castro and R. Carmona, “Convergence and Stability of
the FSR CNN Model,” 3rd IEEE International Work-
shop on Cellular Neural Networks and their Applica-
tions, Italy, December 1994.

[8] N. Lawal, M. O’Nils, “Embedded FPGA memory
requirements for real-time video processing applica-
tions”, NORCHIP Conference, 2005.

[9] R. Matei, “New Image Processing Tasks On Binary
Images Using Standard CNNs,” Proceedings of the In-
ternational Symposium on Signals, Circuits and Sys-
tems, SCS’2001, pp.305-308, July 2001, Romania

- 156 -


	Navigation page
	Session at a glance
	Technical program

