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Abstract—In this paper we propose the use of predic-
tion market mechanisms for time series forecasting. Pre-
diction markets give predictions much closer to real out-
comes than polls. F. Hayek proposed in 1945 that the mar-
ket acts as an information aggregation mechanism. While
prediction markets were recently applied by economists to
predict the outcome of elections or the probability of a sin-
gle event, our proposed mechanism is intended to improve
the aggregation of a series of forecasted values to an en-
semble forecast. Prediction market approaches assume that
all information about a security is reflected in its price. It
is expected that in a similar manner the output of the par-
ticipating models in an ensemble could be aggregated via
prediction market mechanisms instead of simply pooling
results. Having to bet a certain amount of credit points for
each forecasted value makes the creator of a model more
aware of the specific strengthes and weaknesses of the par-
ticipating model. Market mechanisms can thus be used for
building useful ensembles of models which might outper-
form classical aggregation methods.

1. Introduction

In many disciplines of science and technology we are
confronted with processing and interpretation of huge
amounts of measurement data. Typically we have :
Given: A time-series of input-output-pairs (~xµ, yµ) with
µ = 1, . . . ,N or a functional dependence y(~x) (possibly cor-
rupted by noise)
we would like to chose a model (function) f̂ out of some
hypothesis spaceH as close to the true f as possible
Models built on the basis of measured time series can be
used for forecasting - estimation of the future values of
variables.

Many sophisticated methods have been developed for
system modeling based on measurement data. Among
those methods model building using statistical learning
techniques [5] play very important role. Any type of model
constructed has to pass the validation stage - the quality of
models can be evaluated based on the generalization error
ie. performance of the model on the new (unseen) data. In
a logical way we select the model with lowest (estimated)
generalization error.

2. Ensemble Methods

Unfortunately there is no known method for optimal
model selection. Usually a number of models are con-
structed using the training data and later their performance
is evaluated on the test data sets. The best performing
model is selected among those tested.

In recent years some researchers have proposed to com-
bine outputs of several models trained separately. This
technique is called ensambling [5] and a number of vari-
ants such as boosting, bagging etc. have been proposed as
special cases of ensemble building. Building an ensemble
of models one can consider:
• Simple average f̄ (~x) = 1

K
∑K

k=1 fk(~x) or
•Weighted average f̄ (~x) =

∑
k ωk fk(~x) with

∑
k ωk = 1

The ensemble generalization error is always smaller than
the expected error of the individual models. An ensemble
should consist of well trained but diverse models.

2.1. The Bias/Variance Decomposition for Ensembles

Let us consider the case where we have a given data set
D = {(x1, y1), . . . , (xN , yN)} and we want to find a function
f (x) that approximates y also for unseen observations of x
or gives estimates (predicts) of the future values of y for x
outside the training set. The expected generalization error
Err(x) given a particular x and a training set D is

Err(x) = E[(y − f (x))2|x,D] (1)

where the expectation E[·] is taken with respect to the prob-
ability distribution P. The Bias/Variance Decomposition of
Err(x) is

Err(x) = σ2 + (ED[ f (x)] − E[y|x])2

+ED[( f (x) − ED[ f (x)])2] (2)
= σ2 + (Bias( f (x)))2 + Var( f (x)) (3)

where the expectation ED[·] is taken with respect to all pos-
sible realizations of training sets D with fixed sample size
N and E[y|x] is the deterministic part of the data and σ2

is the variance of y given x. Balancing between the bias
and the variance term is a crucial problem in model build-
ing. Let us consider the case of an ensemble average f̂ (x)
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consisting of K individual models

f̂ (x) =

K∑

i=1

ωi fi(x) wi ≥ 0, (4)

where the weights may sum to one
∑K

i=1 ωi = 1. If we put
this into eqn. (2) we get

Err(x) = σ2 + Bias( f̂ (x))2 + Var( f̂ (x)), (5)

As the bias term in eqn. (5) is the average of the biases
of the individual models one should not expect a reduction
in the bias term compared to single models.
The variance term of the ensemble could be further de-
composed [10] and contains the variances of the ensemble
members and the cross terms which disappears if the mod-
els are completely uncorrelated [7]. The reduction of the
variance of the ensemble is related to the degree of inde-
pendence of the single models. This is a key feature of the
ensemble approach.

Krogh et al. [8] derive the equation E = Ē − Ā which
relates the ensemble generalization error E with the aver-
age generalization error Ē of the individual models and the
variance Ā of the model outputs with respect to the aver-
age output. When keeping the average generalization error
Ē of the individual models constant, the ensemble gener-
alization error E should decrease with increasing diversity
of the models Ā. Hence we try to increase A by using two
strategies:

1. Resampling: We train each model on a randomly
drawn subset of 80% of all training samples. The
number of models trained for one ensemble is cho-
sen so that usually all samples of the training set are
covered at least once by the different subsets.

2. Variation of model type: We employ two differ-
ent model types, which are linear models trained by
ridge regression and k-nearest-neighbor (k-NN) mod-
els with adaptive metric.

Ensembling methods have found numerous applications for
approximation and classification purposes [5, 9]. Recently
successful approaches to prediction have been also reported
[17, 18].

From the above description it becomes clear that there
is no method known for selection of a (quasi-)optimal en-
semble - optimal selection of participating models. In this
paper we propose one possible approach to ensemble opti-
mization based on so-called prediction market approaches.
Prediction markets [6] despite the lack of theoretical back-
ground [16] have been used to predict results of elections
, distribution of prices of goods [14, ?] or proliferation of
diseases [1]. We propose to construct a special type of pre-
diction market mechanism adopted to time-series predic-
tion.

3. Description of the method

Without loss of generality, we describe the method in
context of forecasting a daily time-series. The method can
be applied to any other sampling sampling schema such as
weekly, hourly, tick-based in a straightforward fashion.

3.1. Terminology

Forecast organizer The forecast organizer is the entity
that organized the forecast. The organizer declares
what has be to forecaste over which forecasting pe-
riod and specifies the height of the cash reward. The
organizer also supplies all participating models with
the same historical and accompanying data. The fore-
cast organizer can be a person, group, company, insti-
tution, computer program or web service.

Forecast value The forecast value v̂i(m j) is the value fore-
casted by a participating model m j for the i-th day of
the forecast period.

Forecast period In the setting considered in this study, we
assume that a valid forecast is constituted of daily
forecast values that cover the whole forecasting pe-
riod of one or more days, e.g. all days of the upcoming
month.

Participating model Each model m j of the ensemble of
models that is able to generate a series of forecast val-
ues that covers the whole forecast period is called a
participating model. A participating model can thus
be a human applying a certain forecasting technique
or an algorithm or computer program that automati-
cally delivers a forecast.

Betting points The betting points pi(m j) is the amount of
points bet by model m j on the forecast value v̂i(m j)
for the i-th day. The general idea of betting points is
to allow models to express their relative confidence
into the respective predicted value.

Reward points The reward points ri is the amount of cred-
its received for winning the i-th day competition.

Cash reward The forecast organizer declares the total
amount of real money C (e.g. 1000$) that will be
available for rewarding the participating models ac-
cording to their collected reward points.

3.2. Proposed market mechanism

We have several participating models
m1,m2,m3,m4, . . . generating a set of predictions for
each day for the current forecast period (typically one
week or one month). The market mechanism works as
follows:
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model/day(i) 1 2 3 4 . . . . . . 28 29 30
m1 1.5(30) 1.6(30) 1.7(30) . . . . . . . . . 4.2(0) 4.3(0) 4.4(0)
m2 2.2(10) 2.15(10) 2.1(10) . . . . . . . . . 0.85(10) 0.8(10) 0.75(10)
m3 1.2(30) 1.2(0) 1.2(0) . . . . . . . . . 1.2(3.0) 1.2(0) 1.2(0)
a 1.47 1.74 1.8 . . . . . . . . . 1.11 0.8 0.75

(6)

Figure 1: Matrix showing possible different strategies for betting. The number denote the forecast values for each day
with associated betting points (in parenthesis). The last row shows the aggregated (ensemble) forecast ai. The aggregation
was performed by computing the weighted average.

• Each participating model m j obtains for each day of
the forecast period a pre-assigned number of betting
points (say 10 points for each of the 30 days = total of
300 points). These betting points are added to the total
balance P of betting points for model m j. From these
total amount betting points can be freely distributed
on the days of the current forecast period.

• Each participating model m j has publish for the each
day of the forecast period two quantities, the forecast
value v̂i(m j) i and the amount of betting points pi(m j)
it associated to this forecast value.

• The total balance of betting points for a model can not
become negative. Thus the betting points distributed
over the days of the forecast period may not exceed
total balance of betting points.

• Unused betting points in the total balance can be saved
for future forecast periods.

• The aggregated forecast value ai for day i are com-
puted based on the forecast values v̂i(m j) and betting
points pi(m j) of all participating models.

For example the assigned betting points would be as
shown in the matrix in Fig.1

The respective lines in the table show three typical ap-
proaches or strategies chosen by the competitors. The first
one has high confidence in his short-term predictions and
puts all betting points on the first guesses. The second com-
petitor has apparently little knowledge about the quality of
the forecast on different days and chooses to put equal bets
for all predictions. The third competitor has high confi-
dence on the bets only for selected days (e.g. a specific
weekday) and chooses to bet zero points on other days.

After the true outcome of the time-series for the forecast
period is known, according to the accuracy and number of
points bet on each day reward points will be distributed. In
the long run, competitors making better forecasts will get
higher rewards.

3.3. Computing aggregates on the basis of daily bets

The aggregate forecast ai for the i-th day can be com-
puted in at least two ways:

1. As weighted average

ai = 1/
∑

j

pi(m j)
∑

j

pi(m j)v̂i(m j) (7)

2. As weighted median where the forecast value ranked
cumulative sum of points reaches 50% of the total
points for this day.

3.4. Calculation of reward points

The winning model mw of the i-th day’s competition is
the model for which is forecasted value v̂i(m j) is closest to
the actual outcome of the time-series v̂i on this day. In case
of a tie, all models that are the same far from the actual
outcome are considered to be the winning models. Each
winning model receives the following reward points (these
are related to so-called ”pari mutuel” scheme [12]):

ri(m j) = pi(m j)/
∑

j

pi(m j) if |v̂i(m j) − vi| min (8)

ri(m j) = 0 else (9)

The total reward points for model m j are calculated as
r(m j) =

∑
i ri(m j).

3.5. Reward distribution

All participating models obtain a share c j of the cash
reward C proportional to their total reward points r(m j):

c j = C
r(m j)∑
k r(mk)

(10)

3.6. Accumulating betting points

Models that participate repeatedly could be assigned in
addition to the default betting points that every model re-
ceives prior to delivering its forecast with an extra amount
of betting points. The amount of additional betting points
would be derived from the amount of reward points re-
ceived for the previous forecast period. In addition to car-
rying over unused betting points from previous forecast pe-
riods, this would enable above-average performing models
to accumulate betting points.

This mechanism would have two beneficial effects:
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1. The stimulation of constant participation of models in
repeated forecast periods.

2. Models which perform above average would have the
possibility to influence the daily aggregate stronger
than poorly performing models or models that partic-
ipate for the first time.

In case of a model that performed well repeatedly, but
then degraded in performance for an arbitrary reason, the
winner-takes-all mechanism when determining the win-
ner(s) of a daily competition would quickly wash away the
accumulated betting points of such a model and thus dimin-
ishes the influence of this model on future aggregates.

4. Discussion

The proposed mechanism should be able to improve the
aggregation of forecast to ensemble forecast by incorporat-
ing information about the quality of each forecasted value
from the participating groups. Additionally the reward
schema encourages participants to tune their forecast to
the best possible accuracy that can be obtained by a given
forecasting technique. This action can be related to adjust-
ing weights in the aggregate sum of outputs of models in
the ensemble. When applied for repeated forecasting peri-
ods, participants showing a constantly above-average per-
formance will accumulate betting points and can thus influ-
ence the aggregated prediction stronger in the direction of
their forecast values which proved superior in the past.

A possible drawback of the method is that in case all
participating models assign zero betting points to a certain
day of the forecast, there is no information on how to ag-
gregate the forecasted values to the ensemble forecast. To
avoid a gap in the forecast series one could compute the un-
weighted average of the forecast values. No reward points
will be assigned to any of the participating models in such
a day.
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