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Abstract—A large population of coupled nonlinear os-
cillators may deteriorate due to a variety of causes such as
aging and accidents. As a result, it may happen that some
elements turn inactive, losing spontaneous oscillatory ac-
tivity. Here discussed is the behavior of such a population
of coupled oscillators when the ratio of inactive elements as
well as the coupling strength are varied, with an emphasis
on a sort of phase transition, called aging transition.

1. Introduction

Large populations of coupled nonlinear oscillators have
been playing crucial roles in a variety of disciplines of sci-
ence and technology. Their coherent behaviors such as syn-
chronization have not only given a great impact to the study
of diverse rhythmic phenomena, but also suggested a rich
variety of potential applications. In view of these, quite a
few studies have been done so far on the dynamics of such
large-scale dynamical systems[1, 2].

However, there is one point overlooked in such studies,
which is the fact that real coupled oscillators, like any other
systems, suffer from some kind of deterioration from the
beginning or as time passes. Motivated by this, we have
theoretically studied the effect of “bad components” on the
behavior of a population of coupled oscillators[3, 4], where
a “bad component” means an oscillator which has lost the
ability of performing self-sustained oscillation. Such a
component of the population will be hereafter called an “in-
active” oscillator, while a component keeping that ability
an “active” one. More specifically, we have examined what
happens in such a system as the raio of inactive elements
as well as the coupling strength are varied. This problem
is important, for example, in understanding the robustness
of ubiquitous biological rhythms and in technological con-
texts, where no system is allowed to be fragile to defects.

The purpose of this article is to briefly review our recent
results on this problem. In Section 2, we deal with globally
coupled oscillators to encounter such phenomena as aging
transition and desynchronization or clustering. Then, we
proceed to Section 3, where a case of locally coupled oscil-
lators is examined to check what new features the locality
of coupling brings to the system. This paper comes to an
end after a summary is given along with some discussion
in Section 4.

2. The case of global coupling[3, 4]

Here we focus on a large ensemble of globally coupled
oscillators, which is assumed to consist of two subpopula-
tions: active oscillators and inactive ones. Let the size ratio
of the latter be p, which is one of the key parameters. For
simplicity, all elements of each subpopulation are set to be
identical. Moreover, the global coupling is supposed to be
diffusive. The general form of such systems would then be
as follows:

ẋ j = F j(x j) +
K
N

N∑
k=1

D · (xk − x j) (1)

for j = 1, . . . ,N(≫ 1), where the overdot means differ-
entiation with respect to time t, x j is the state vector of
the jth element, the first term on the right hand side repre-
sents uncoupled dynamics, chosen as F j = F for j ∈ Sa ≡
{1, . . . ,N(1 − p)}, = G for j ∈ Si ≡ {N(1 − p) + 1, . . . ,N},
in which Sa and Si are the active and inactive subpopula-
tions, respectively; K is the coupling strength, and D is a
diffusion matrix. The uncoupled dynamics of each inactive
element, i.e. ẋ = G(x), is simple: it is stationary with a sta-
ble fixed point. In contrast, active dynamics may vary from
one system to another. This paper is concerned mostly with
a periodic case. Our numerical and analytical results indi-
cate that this type of dynamical systems exhibits a kind of
phase transition from a dynamic state to a stationary one,
as p exceeds a critical value, say pc (< 1), provided K is
greater than a threshold value denoted by Kc hereafter. To
illustrate such a transition, which we call an aging transi-
tion(AT), let us take coupled Stuart-Landau (SL) oscillators
as an example:

ż j = (α j + iΩ − |z j|2)z j +
K
N

N∑
k=1

(zk − z j) (2)

for j = 1, . . . ,N, where z j is the complex amplitude of
the jth oscillator, α j is a parameter specifying the distance
from a Hopf bifurcation, taken as α j = a > 0 ( j ∈ Sa), =
−b < 0 ( j ∈ Si), and Ω is the natural frequency. For K = 0,
each active element is a limit-cycle oscillator with ampli-
tude

√
a and period 2π/Ω, whereas each inactive one set-

tles at the trivial fixed point, z = 0[5]. Numerical results
indicate that for K > 0, all active elements perfectly syn-
chronize and so do all inactive ones. We therefore reduce
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Figure 1: Schematic (K, p) phase diagram. In the dynamic
phase, all elements oscillate, while in the quiescent phase,
every element is stationary. The boundary between them,
given by p = pc, is where the aging transition takes place.
Note that such a transition occurs only for K > Kc.

Eq. (2) to a two-variable system as follows:

Ȧ = (a − K p + iΩ − |A|2)A + K pI , (3)

İ = (−b − Kq + iΩ − |I|2)I + KqA , (4)

where A (I) is the common complex amplitude in the syn-
chronized active (inactive) subpopulation. The AT takes
place when the trivial fixed point A = I = 0 starts to be sta-
ble for increasing p. A simple algebra yields the following
formula of pc (see Fig. 1):

pc =
a(K + b)
(a + b)K

. (5)

Since pc may not be larger than unity, this formula gives
Kc = a. These results were verified by means of numerical
integration of Eq. (3). It is crucial to note the significance
of pc: its small values mean that the system’s dynamic ac-
tivity is fragile against the deterioration of elements, so that
pc is a measure of robustness of the system’s operation. It
is also noteworthy that pc tends to decrease with K. This
leads to the warning that increasing the coupling strength to
assure the system’s coherence may damage its robustness
against aging, accidents, and so on. Our studies so far sug-
gest that this warning applies to many coupled-oscillator
systems other than SL as well. There is one more point
with AT: Suitably defined order parameters to measure the
degree of order of the system can be shown to display uni-
versal scaling laws near p = pc and also in the vicinity of
the special point (K, p) = (Kc, 1).

The SL oscillator treated above has one nongeneric prop-
erty as a model of periodic oscillators, which is that it
is isochronous, meaning that the frequency θ̇, where θ ≡
Arg(z), does not depend on the amplitude |z|. This prop-
erty is a consequence of the fact that the coefficient of the
nonlinear term is real in Eq. (2). Nonisochronicity follows
by adding an imaginary part, say ic2, to the coefficient.

Figure 2: An example of the desynchronization horn in
coupled SL oscillators with a = 2, b = 1, c2 = −3. The col-
ored regions are where the active group of the system with
N = 1000 was numerically found to desynchronize; the
state is either periodic (dark) or nonperiodic (gray). The
thin dotted curve lying at the right upper corner of each
panel is the aging transition line. The dashed, solid, and
dotted curves converging at (K, p) = (2, 1) show theoreti-
cal curves corresponding to bifurcations of desynchronized
states. From Ref.[4].

It was found that if |c2| exceeds the value of one, then
there appears a new horn-like region in the (K, p) plane
such that the synchronization of active oscillators breaks
down, though the inactive subpopulation remains synchro-
nized there. Figure 2 shows an example of this case. We
call such a region a desynchronization horn (DH). In a DH,
active oscillators split into a number of clusters, where a
cluster stands for a set of oscillators with identical state
vectors. The number of clusters as well as their dynamics
depend on not only parameters, but initial conditions. A
couple of examples of this phenomenon, clustering, of the
active group is displayed in Fig. 3. The existence of a DH
in the (K, p) phase diagram also seems to be a faily com-
mon feature of oscillator populations belonging to the cate-
gory of Eq. (1). A heuristic theory was proposed to explain
the occurrence of clustering in coupled nonisochronous SL
oscillators[6, 4]. Quite recently, effects of nonscalar dif-
fusive coupling and frequency distribution started to be
investigated[7].

3. The case of local coupling[8]

The global coupling dealt with in the previous section
is of course an idealistic limit of long-range coupling. In
order to make the theory of ”aging” more practical, one
needs to elucidate what differences follow if this idealiza-
tion is loosened. Here, as a first step towards answering
this question, we consider the behavior of a partially inac-
tivated population with coupling in the opposite extreme.
More specificaly, we suppose that a large number of active
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Figure 3: Examples of time series data for N = 1000, c2 = −3, a = 2, b = 1, p = 0.4. Here we have three synchronized
clusters: the larger active (cluster 1), the smaller active (cluster 2), and the inactive. (a) K = 1.32 (quasiperiodic state; the
size of cluster 2 is 2). (b) K = 1.82 (periodic state; the size of cluster 2 is 27). From Ref.[4].

or inactive oscillators are placed on a ring with nearest-
neighbor interactions. By again taking SL oscillators as an
example, we have the following equations:

ż j = (α j + iΩ)z j − c̃2|z j|2z j + Kc̃1(z j+1 − 2z j + z j−1) (6)

for j = 1, . . . ,N (≫ 1) with c̃k ≡ 1 + ick (k = 1, 2) and z0 =

zN , zN+1 = z1, where c1 in the interaction term parametrizes
the degree of non-scalar nature of the diffusive coupling
(c1 = 0 corresponds to scalar coupling). The choices of
α j are the same as before. However, there is an important
difference from the case of global coupling: The system’s
architecture cannot be determined by the aging parameter
p alone, so that it is necessary to perform averaging over as
many different realizations of {α j} as possible. The results
to follow were all obtained after this procedure.

Figure 4 presents simulation results for the aging tran-
sition boundary in the (K, p) phase diagram, which results
reveal that such a transition exists in the case of local cou-
pling as well, again with a critical coupling strength Kc.
However, the same figure also indicates that the AT bound-
aries monotonically shift upwards as the system size N
grows, allowing us to conjecture that pc converges to unity
in the limit N → ∞, irrespective of K. The next figure,
Fig. 5, supports this conjecture, where we clearly see that
the critical value of p indeed approaches one obeying a K-
dependent power law, i.e.

1 − pc(K,N) ∝ N−γ(K). (7)

Numerical simulation shows that the exponent γ(K) tends
to decrease towards zero for increasing K.

The above power law of pc remains to be theoretically
explained as yet, but the disappearance of the AT in the
thermodynamic limit can be understood as follows: As
long as p < 1, there is a finite probability for an arbitrary
large segment containing only active elements to exist in
the ring and such a segment must destabilize the quiescent
state with z j = 0 for all j, because influences from inac-
tive elements which work only at both ends of the segment
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Figure 4: Aging transition boundaries for a = 2, b = 1, c1 =

−2, c2 = −1, where the data are for N=100(10), 200(6),
400(6), 800(3), 1600(3) from the lowest to the highest;
each parenthesized number is the number of realizations
over which averaging was made. The data points are con-
nected by lines to guide the eye. The vertical dotted line
shows the theoretical value of Kc. From Ref.[8].

should be negligible. Note that this argument applies to
higher dimensions as long as the coupling is local. We add
that the critical coupling strength Kc can be theoretically
obtained (see Fig. 4).

Let us now check how the deterioration or aging of the
population laid down on the ring affects its spatiotempo-
ral dynamics. Here we restrict ourselves to the case that
stable travelling waves propagate for p = 0; this condi-
tion may be expressed as 1 + c1c2 > 0 in the continuum
limit[5]. Figure 6 is devoted to an example of spatiotem-
poral phase patterns, in which black regions show where
0 < Arg(z j(t)) < π (mod. 2π). Reflecting the randomness
of α j, this kind of patterns for p > 0 are more or less ir-
regular, but there is one remarkable fact with them: In spite
that the quenched disorder of the system measured by the
variance of {α j} is enhanced by increasing p in the range
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Figure 5: Power law decay of 1 − pc for increasing N,
where parameter values are the same as in Fig. 4 and
N=100(100), 200(100), 400(100), 800(100), 1600(100),
3200(50), 6400(50), 12800(20); K=1, 1.8, 2.2, 2.6, 3.3, 4
from the lowest data to the highest. The data for K > 2 are
shifted upwards for clarity. From Ref.[8].

p < 1/2, a certain interval of p exists such that the increase
in p seems to promote local synchronization of oscillators.
This peculiar phenomenon, a kind of disorder-induced co-
herence, can be studied quantitatively through computation
of a spatial phase correlation function, the result of which
demonstrated that the correlation length becomes minimum
at a value of p less than 1/2, in harmony with the behavior
of the phase patterns. An intuitive explanation of this phe-
nomenon is given in Ref.[8].

4. Summary and discussion

Studies on the dynamics of a large population of coupled
active and inactive oscillators have been reviewed. They
are important not only in searching for novel phenomena
in the new type of dynamical systems, but in the studies
of the robustness of natural as well as artificial coupled-
oscillator systems against defects. In the case of global
coupling, there is a transition from the dynamic phase to
the stationary, called an aging transition. In contrast, in the
case of local coupling, such a transition is likely to be ab-
sent in the thermodynamic limit. Does this imply that AT
is not of significance in locally coupled systems ? The an-
swer is definitely NO. As demonstrated above, AT takes
place in finite-size systems anyway. Moreover, the size
of a real population of coupled oscillators, whether phys-
ical or biological, is usually not huge, unlike equilibrium
statistical-mechanical systems such as magnets. For exam-
ple, the entity of mammalian circadian clocks, SCN, con-
sists of O(104) clock cells[9]. By this reason, AT is no less
important in locally coupled systems than in globally cou-
pled systems. Besides AT, populations of coupled active
and inactive oscillators can exhibit a variety of interesting
behaviors, e.g. clustering in the desynchronization horn
and the disorder-induced phase coherence, as we have seen

Figure 6: Spatiotemporal behavior of the oscillator phase
for N = 400,K = 2, a = b = 1, c1 = 1, c2 = −0.5, p =
0.4, where the abscissa is time t spanning an interval of
size 50, while the ordinate is the oscillator number j. The
leftmost symbols (×) show the locations of inactive sites.
From Ref.[8].

above. Probably, many others will be waiting to be discov-
ered in diverse contexts and population architectures.
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