

GPGPU Accelerated Scene Segmentation Using Nonparametric Clustering

Balázs Varga and Kristóf Karacs

Dept. of Information Technology, Pázmány Péter Catholic University
Práter str. 50/a, H-1083, Budapest, Hungary

E-mail: varga.balazs@itk.ppke.hu, karacs@itk.ppke.hu

Abstract– This paper presents the parallel
implementation of a nonparametric image segmentation
method: the mean shift algorithm using joint spatial-range
feature space. By considering spatial information, the
mean shift can distinguish topographically differing
objects in the scene, but this feature costs additional
computational demand through increased number of kernel
functions. The proposed algorithm runs the mode-defining
kernel iterations parallel by utilizing the many-core
processor architecture present in the general-purpose
graphics processing unit (GPGPU). We use our own voting
procedure for pixel-cluster assignment. Numerical
evaluation showed that our solution efficiently speeds up
the image clusterization procedure.

1. Introduction

Scene segmentation is one of the most common, yet

most versatile tasks of image processing. Among today’s
most advanced segmentation approaches, such as graph
cuts [1][2], normalized cuts [3], or various types of k-
means [4][5], the mean shift segmentation is one of the
most studied and applied nonlinear techniques. Basically
having no a-priori knowledge demand, it can dynamically
set the number of segmented clusters through a
nonparametric framework. Our solution gives a notable
speed-up to the mean shift method, by parallelizing its
internal structure, and instead of running it on a CPU unit,
we use a many-core programmable general-purpose
graphics programming unit (GPGPU) [6]. For now, we did
not aim to overcome the quality of the original algorithm
implemented on the CPU, rather to show that our GPGPU-
based implementation can achieve similar segmentation
accuracy with considerably lower time demand.

The paper is organized as follows: in the first part of the
second section we give an overview of the generic, joint
feature space mean shift paradigm. The second part of the
section briefly summarizes related works about possible
speed-up strategies; while the third part describes the
disadvantage behind the usage of the spatial domain. The
third section explains our solution of speeding up this task.
Section four presents the evaluation framework, which is
followed by the numerical results in section five. The
paper is closed with a short summary in the sixth section.

2. Algorithmic background

After the mean shift procedure was introduced by
Fukunaga and Hostetler [7] in 1975, it was Cheng [8] who
pointed out 20 years later that the mode seeking process of
the algorithm is a parallel hill climbing method, applying
the clusterization algorithm in the Hough space. Following
another half a dozen of years of smoldering, Meer and
Comaniciu gave an extensive overview [9] of the
segmentation framework, using it for image segmentation
and discontinuity preserving smoothing. Their approach
concerning color images is briefly summarized in
subsection 2.1.

2.1 Mean shift in the joint feature space

The mean shift procedure considers its feature space as

an empirical probability density function. A local
maximum of this function (namely, a region over which it
is highly populated) is called a mode. Mode calculation is
formulated as an iterative scheme of mean calculation,
which takes a certain number of feature points and
calculates their mean value by using a weight kernel
function. Meer and Comaniciu used a composite feature
space consisting of both topographical (spatial) and color
(range) information of the image. As a result, each feature
point in this space is represented by an χ=(xr;xs) 5D vector
which consists of the corresponding pixel’s xs=(x,y) 2D
position in the spatial lattice, and its xr 3D color value in
the applied color space (e.g., the xr=(Y,Cb,Cr)
coordinates). The iterative scheme for the calculation of a
mode is as follows: let χi and zi be the 5D input and output
points in the joint feature space for all i=[1,n], n being the
number of pixels in color image I.
Then for each i

1. Initialize k = 1
2. Compute the iterative formula

∑

∑

=

=
+













 −












 −













 −












 −

=
n

i s

k
isjs

r

k
irjr

n

j s

k
isjs

r

k
irjr

j

k
i

h

xx
g

h

xx
g

h

xx
g

h

xx
g

1

2

,,

2

,,

1

2

,,

2

,,

1

χ

χ
 (1)

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 149 -

until the mean shift vector k
i

k
i χχ −+1 falls under a

given threshold, where g denotes the Gaussian kernel
function, with hs and hr being the spatial-, and range
bandwidth parameters respectively.

3. Allocate 1+= k
iiz χ ; that is, output value zi is given by

feature point χi after the final (k+1)st step.

Those zi points, which are adequately close to each

other, are concatenated resulting discrete, non-overlapping
clusterization of the input image. All pixels in the cluster
inherit the color of its mode.

The main advantage of applying the joint feature space
is that the algorithm became capable of discriminating
scene objects based on their color and position; making
mean shift a multi-purpose, nonlinear, nonparametric tool
for image segmentation.

On the other hand the disadvantage of the algorithm, as
it was specified earlier by Cheng is its high computational
complexity of O(n2).

2.2 Acceleration strategies

Comaniciu and Meer introduced an efficient technique

called the coarse grid [10] in order to highly reduce
complexity. Briefly, they perform random tessellation of
the feature space with m << n kernels, execute mean shift
segmentation (resulting zi, i=[1,m] modes), merge close
modes (as in [9]), then assign each χi feature point to the
closest zj cluster-defining mode. They showed that this
approach is capable of producing technically equal
segmentation quality with a computation demand of
O(m*n) << O(n2).

Ever since, several alternative techniques have been
proposed to achieve speed-ups, e.g. through space
discretization and downsampling [11], local subsets [12],
expectation-maximization [11][13], hierarchical solutions
[14][15], and the Newton iteration method [16][17].
Although our current system does not use these alternative
techniques, later on most of them can easily be added to
our framework enhancing its speed and reducing its time
demand.

2.3 Over-segmentation: the advantage’s tradeoff

The clear advantage brought by the usage of the spatial

domain is the topographical discriminative potential:
objects with similar or even the same color can be
distinguished, if they are topographically distinct. On the
other hand spatial discrimination of two discrete objects
requires the usage of two kernels. Therefore in the case of
very detailed images, spatial filtering involves a
computational tradeoff: proper coverage of the feature
space necessitates the usage of numerous kernels.

3. Our approach

As a result, both the original and the improved

algorithms follow the bottom-up strategy, when the output
is a result of over-segmentation, which is followed (off-
line), or accompanied (on-line) by a cluster merging
procedure.

We considered the off-line mean shift algorithm, which
is divided into two main subtasks: the mode calculation
and the cluster merging procedure. Mode calculation
algorithm is a highly data parallel [18] task: the same
iterative procedure is performed on the elements of the
feature space with each kernel having a different seed
point. Nowadays many-core GPGPUs are publicly
available at a reasonable price, having more than a
hundred distinct stream processors, which can effectively
handle data-parallelism-related tasks. We implemented the
mode seeking task on a GPGPU, and compared its
performance with the CPU implementation of the
procedure.

3.1 GPGPU implemented mode calculation

Our algorithm applies Comaniciu and Meer’s coarse

grid technology [10] on the joint feature space. But instead
of running the iteration specified by eq. 1 on a single
kernel until saturation, we extend this computational
framework by running the iterative algorithm
simultaneously on several mean shift kernels, which we
call multiple simultaneous mode seeking (MSMS).

 The MSMS begins by selecting m initial mean points
randomly in the joint feature space. The mean shift
iteration is then started from these seed points by using
Gaussian kernel functions having a common (hs,hr) spatial-
range bandwidth parametrization for each kernel. The
procedure is terminated, when the length of each kernel’s
mean shift vector becomes smaller than a pre-defined
threshold value.

In order to properly assign all feature points to the
corresponding mode, we constructed a voting system. In
every iteration of mode seeking, for each kernel we
compute pixel-wisely the following cumulative confidence
value (CCV):













 −












 −
+=+

2

,,

2

,,
,

1
,

s

k
isjs

r

k
irjrk

ji
k

ji h

xx
g

h

xx
gCC (2)

with
 00 =

i,j
C (3)

where k
jiC ,
denotes the confidence value of pixel i at the

kth iteration for kernel j. Note that the calculation of the
CCV does not require additional computation, as it is a
part of the mean shift iteration’s numerator. Let

jiC ,
denote

the final CCV computed in the last iteration and let CIDi
stand for the ith pixel’s cluster ID. After the modes are
retrieved and every

jiC ,
has been obtained, each image

- 150 -

pixel gets associated with a mode using the following rule:

j

jii CCID)max(arg ,= (4)

3.2 Cluster merging procedure

The number and structure of final clusters are constructed
with cluster merging, which currently runs on the CPU.
Cluster i and j are joined, if they satisfy the criteria:

C1. The two clusters have a common border in terms
of the eight-neighbor connectivity.

C2.
rjrir hxx <− ,,
.

In this case the position of the mode is recalculated. Let
NPi and NPj denote the number of pixels in clusters i and j
respectively, and let us say that both C1 and C2 criteria
holds and the two are merged into cluster k. Then the color
information carried by mode zk of the newly formed cluster
is

ji

jjii
k NPNP

zNPzNP
z

+
∗+∗

= (5)

i.e. it is a weighted average of the conjoined duet. The
procedure runs iteratively until no classes can be merged.

4. Evaluation framework

To provide comparative results to the proposed GPGPU

algorithm, the coarse grid CPU-optimized mean shift
procedure was implemented with as few differences from
the GPGPU version as possible. The main difference is
that while the GPGPU runs the MSMS version, the CPU
does the mode calculation one by one (single simultaneous
mode seeking, SSMS).

Image segmentation is an ill-posed task [19], but several
publicly available image corpora exist to make algorithms
comparable. For evaluation purposes, we selected 50 color
images from the Berkeley Segmentation Dataset (BSDS),
[20] for which multiple human-made segmentation maps
are provided as reference. Let the name best parameter
pair (BPP) denote a pair of (hs, hr) kernel bandwidth
parameters that result in a closest-to-the-reference
segmentation for a given image of our evaluation image
set.

In order to determine such pairs, the CPU algorithm was
utilized the following way: 64 alternative segmentations
were made for each evaluation image using 8 x 8 different
(hs, hr) bandwidth values for each of the 50 images. During
the process, the algorithm computed and logged the
number of clusters before and after the merging procedure,
and the elapsed time of the mode seeking. Then,
depending on the number of provided BSDS references 1
to 4 BPPs were selected for each image, resulting a total of
117 pairs. Next, the GPGPU algorithm was run on the
evaluation set using the corresponding BPPs, and finally
the elapsed time of the mode seeking was compared to the
CPU algorithm. It is worth to note that the GPGPU

runtime includes the time-demanding CPU to GPGPU and
GPGPU to CPU data transfers. Furthermore, since the
number of mean shift iterations depends on the (randomly
selected) initial kernel position, we ran both algorithms
multiple times with the same parameterization, and
compared the average running times. Moreover cluster
merging was done using the same CPU-based algorithm;
therefore time consumption of the mode merging
procedure was not part of the comparison.

All calculations were run on a single PC equipped with
2GB of RAM and an Intel E6400 CPU running at
2.13GHz. The GPGPU was an nVidia G92 GPU operating
with 112 stream processors and 1024MB of video RAM.

5. Results

On average, the GPGPU was able to segment the scene

2.997 times faster under the same circumstances. Fig. 1/a
displays an example image from the BSDS among with a
segmentation made by human observer on 1/d, and our
segmentation results made on the different computational
platforms on 1/b and 1/c.

6. Conclusion

We successfully implemented the nonparametric mean

shift clustering algorithm using the joint spatial-range
feature space onto the many-core GPGPU, for which we
used our own voting procedure for mode selection. The
GPGPU algorithm proved to run almost three times faster
than its CPU variant. Later on we plan to enhance the
system using the acceleration strategies described in
Section 2.2.

References

[1] V. Kwatra, A. Schodl, I. Essa, G. Turk, A. Bobick,
“Graphcut textures: Image and video synthesis using
graph cuts,” ACM Transactions on Graphics, vol. 22,
2003, pp. 277–286.
[2] P. Felzenszwalb D. Huttenlocher. “Efficient graph-
based segmentation algorithm,” IJCV, 2004.
[3] J. Shi and J. Malik. “Normalized cuts and image
segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22(8):888–905, 2000.
[4] P.S. Bradley U.M. Fayyad, “Refining initial points for
k-means clustering,” Proc. 15th International Conference
on Machine Learning, 1998.
[5] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D.
Piatko, R. Silverman, A.Y. Wu, “An efficient k-means
clustering algorithm: Analysis and implementation,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, 2002, pp. 881–892.
[6] D. Luebke, M. Harris, N. Govindaraju, A. Lefohn, M.
Houston, J. Owens, M. Segal, M. Papakipos, I. Buck,
“GPGPU: general-purpose computation on graphics
hardware,” Proc. of the 2006 ACM/IEEE Conference on
Supercomputing, Tampa, Florida: ACM, 2006, pp. 208.

- 151 -

 a) Original image b) Output of CPU segmentation c) Output of GPGPU segmentation

 d) Reference cluster map given by the BSDS e) Cluster map obtained with CPU segmentation f) Cluster map obtained with GPGPU segmentation

[7] K. Fukunaga, L. D. Hostetler, “The estimation of the
gradient of a density function, with applications in pattern
recognition,” IEEE Transactions on Information Theory,
vol. 21, pp. 32–40, 1975.
[8] Y. Cheng, “Mean shift, mode seeking, and clustering,”
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 17, pp. 790–799, 1995.
[9] D. Comaniciu, P. Meer, “Mean shift: A robust
approach toward feature space analysis,” IEEE
Transactions on Pattern Analysis and Machine
Intelligence, vol. 24, 2002, pp. 603–619.
[10] D. Comaniciu, P. Meer, “Distribution free
decomposition of multivariate data,” Pattern Analysis and
Applications, vol. 2, pp. 22–30, 1999.
[11] M.A. Carreira-Perpinan, “Acceleration strategies for
Gaussian mean-shift image segmentation,” CVPR, 2006.
[12] K. Zhang, M. Tang, J.T. Kwok, “Applying
neighborhood consistency for fast clustering and kernel
density estimation,” Proc. CVPR 2005, pp. 1001 – 1007,
2005.
[13] M.A. Carreira-Perpinan, “Gaussian Mean-Shift is an
EM algorithm,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 29, 2007, pp. 767-776.
[14] S. Paris and F. Durand, “A topological approach to
hierarchical segmentation using mean shift,” Proc. CVPR,
2007.
[15] D. DeMenthon. “Spatio-temporal segmentation of
video by hierarchical mean shift analysis,” Statistical
Methods in Video Processing Workshop, 2002.
[16] M.A Carreira-Perpinan, “Mode-finding for mixtures
of Gaussian distributions,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(11) pp. 1318–
1323, November 2000.
[17] C. Yang, R. Duraiswami, D. DeMenthon, L. Davis,
“Mean-shift analysis using quasi-Newton methods,” Int.
Conf. on Image Processing, 2003.

[18] W.D. Hillis, J. Guy, L. Steele, “Data parallel
algorithms,” Communications of the ACM, vol. 29, 1986,
pp. 1170-1183.
[19] T. Poggio, V. Torre, “Ill-posed problems and
regularizaron analysis in early vision,” Artificial
Intelligence Lab. Memo, vol. 773.
[20] D. Martin, C. Fowlkes, D. Tal, J. Malik, “A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring
ecological statistics,” Proceedings of the Eighth IEEE
International Conference on Computer Vision. ICCV
2001, Vancouver, BC, Canada, pp. 416-423.

Figure 1. An example of segmentation made on the different computation platforms. Segmented images are result of mode seeking followed by
cluster merge. (hs, hr) = (0.08,0.01), m = 54 clusters were merged into 4 (CPU case) and 5 (GPGPU case)

- 152 -

	Navigation page
	Session at a glance
	Technical program

