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Abstract— This paper presents the parallé. Algorithmic background
implementation of a nonparametric image segmemtatio
method: the mean shift algorithm using joint spatimge  After the mean shift procedure was introduced by
feature space. By considering spatial informatitiie Fukunaga and Hostetler [7] in 1975, it was CherjgMi8o
mean shift can distinguish topographically diffgrinpointed out 20 years later that the mode seekinggss of
objects in the scene, but this feature costs aditi the algorithm is a parallel hill climbing methodypdying
computational demand through increased numberrofke the clusterization algorithm in the Hough spacdlowong
functions. The proposed algorithm runs the modetithg another half a dozen of years of smoldering, Meadt a
kernel iterations parallel by utilizing the manyeo Comaniciu gave an extensive overview [9] of the
processor architecture present in the general-perpsegmentation framework, using it for image segntenta
graphics processing unit (GPGPU). We use our owimgo and discontinuity preserving smoothing. Their ajpgto
procedure for pixel-cluster assignment. Numericabncerning color images is briefly summarized in
evaluation showed that our solution efficiently egie up subsection 2.1.
the image clusterization procedure.

2.1 Mean shift in the joint feature space
1. Introduction
The mean shift procedure considers its featureespac

Scene segmentation is one of the most common, get empirical probability density function. A local
most versatile tasks of image processing. Amongwtsd maximum of this function (namely, a region over gbhit
most advanced segmentation approaches, such ak gsahighly populated) is called a mode. Mode calitolais
cuts [1][2], normalized cuts [3], or various type$ k- formulated as an iterative scheme of mean calaulati
means [4][5], the mean shift segmentation is onghef which takes a certain number of feature points and
most studied and applied nonlinear techniques.dalgi calculates their mean value by using a weight Kerne
having noa-priori knowledge demand, it can dynamicalljunction. Meer and Comaniciu used a composite featu
set the number of segmented clusters throughspace consisting of both topographicgdafial) and color
nonparametric framework. Our solution gives a nletalfrange) information of the image. As a result, each featu
speed-up to the mean shift method, by parallelizisg point in this space is represented byyaiix.;x;) 5D vector
internal structure, and instead of running it o8RU unit, which consists of the corresponding pixets(x,y) 2D
we use a many-core programmabdgneral-purpose position in the spatial lattice, and ks 3D color value in
graphics programming unit (GPGPU) [6]. For now, we didthe applied color space (e.g., the=(Y,Cb,Cr)
not aim to overcome the quality of the originalalthm coordinates). The iterative scheme for the calmadf a
implemented on the CPU, rather to show that our BBG mode is as follows: let, andz be the 5D input and output
based implementation can achieve similar segmentatpoints in the joint feature space for id[1,n], n being the
accuracy with considerably lower time demand. number of pixels in color imade

The paper is organized as follows: in the first pthe Then for each
second section we give an overview of the genguiof 1. Initializek = 1
feature space mean shift paradigm. The secondopéne 2. Compute the iterative formula

section briefly summarizes related works about iptess ) )
speed-up strategies; while the third part descrithes Zn:)(-g[ X Jg[ Xs %, J
disadvantage behind the usage of the spatial dorfai® =il h, h, (1)
third section explains our solution of speedinghip task. Xt = . 5

Section four presents the evaluation framework,ctvhs N X Xoj~Xs;

followed by the numerical results in section fivehe Z‘g h, g h,

paper is closed with a short summary in the sigtttisn.
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until the mean shift VeCtOHXiM‘XikH falls under a 3. Our approach

given threshold, wherg denotes the Gaussian kernel As a result, both the original and the improved

Luncélond,t;]/wth hs anfl h being t?e Tpanal-, and rang%lgorithms follow the bottom-up strategy, when theput
anaw parliTe ers -respec Ively. o is a result of over-segmentation, which is followgdf-
3. Allocatez, = );" ~; that is, output valug is given by line), or accompanied (on-line) by a cluster meggin
feature poiny; after the final k+1)% step. procedure. . _ . o
We considered the off-line mean shift algorithm,ickh
Thosezi pointS, which are adequate'y close to ea@] divided into two ma|-n subtasks: the mode calouta )
other, are concatenated resulting discrete, nonlapging and the cluster merging procedure. Mode calculation
clusterization of the input image. All pixels inetltluster @lgorithm is a highly data parallel [18] task: teame
inherit the color of its mode. iterative procedure is performed on the elementshef
The main advantage of applying the joint featumepfeqture space with each kernel having a differemidg
is that the algorithm became capable of discrinmgat POint. Nowadays many-core GPGPUs are publicly
scene objects based on their codmd position; making available at a reasonable price, hav!ng more than a
mean shift a multi-purpose, nonlinear, nonparameeol hundred distinct stream processors, which can tefedy
for image segmentation. handle data-parallelism-related tasks. We implestkiite
On the other hand the disadvantage of the algoriggnmode seeking task on a GPGPU, and compared its
it was specified earlier by Cheng is its high comational Performance with the CPU implementation of the
complexity ofO(n?). procedure.

2.2 Acceleration strategies 3.1 GPGPU implemented mode calculation

Comaniciu and Meer introduced an efficient techaiqu Our algorithm applies Comaniciu and Meer’s coarse
called the coarse grid [10] in order to highly reeludrid technology [10] on the joint feature spacet Bstead
complexity. Briefly, they perform random tessetiatiof Of running the iteration specified by eq. 1 on agk
the feature space with << n kernels, execute mean shifkernel until saturation, we extend this computalon
segmentation (resulting, i=[1,m] modes), merge closeffamework by running the iterative algorithm
modes (as in [9]), then assign ewﬁeature point to the Simultar'.leOUS.|y on several mean. shift kernels, whieh
closestz cluster-defining mode. They showed that thfll multiple smultaneous mode seeking (MSMS). _
approach is capable of producing technically equal The MSMS begins by selecting initial mean points
segmentation quality with a computation demand '@domly in the joint feature space. The mean shift
o(n*n) << O(n°). iteration is then started from these seed pointuging

Ever since, several alternative techniques haven b&gussian kernel functions having a commaghy) spatial-
proposed to achieve speed-ups, e.g. through sp@f@e bandwidth parametrization for each kernele Th
discretization and downsampling [11], local subgégj, Procedure is terminated, when the length of eacheks
expectation-maximization [11][13], hierarchical sbns Mean shift vector becomes smaller than a pre-défine
[14][15], and the Newton iteration method [16][17fhreshold value.

Although our current system does not use thesenalige N order to properly assign all feature points be t
techniques, later on most of them can easily beecdd Corresponding mode, we constructed a voting systam.
our framework enhancing its speed and reducingirite €very iteration of mode seeking, for each kernel we

demand. compute pixel-wisely the followingumulative confidence
value (CCV):
2.3 Over-segmentation: the advantage’s tradeoff x  =x*IP) (Ix  =x* [
Cik-ji»l - (:ikj + g T, ) T, g S, ) S| (2)
The clear advantage brought by the usage of thiabpa ‘ h, H ‘ h, H

domain is the topographical discriminative potdntia yiih
objects with similar or even the same color can be 0 _ 3)
distinguished, if they are topographically distinén the Ci,j =0

other hand spatial discrimination of two discretests  \yhere o« denotes the confidence value of pikeit the
i

requires the usage of two kernels. Therefore inctise of . , _
very detailed images, spatial filtering involves k' iteration for kernej. Note that the calculation of the

computational tradeoff: proper coverage of the vt CCV does not require additional computation, af ia
space necessitates the usage of numerous kernels. part of the mean shift iteration’s numerator. t}f‘tj denote

the final CCV computed in the last iteration antd @¢D;
stand for thei” pixel's cluster ID. After the modes are
retrieved and everg, | has been obtained, each image
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pixel gets associated with a mode using the folhgwule: runtime includes the time-demanding CPU to GPGP&J an
GPGPU to CPU data transfers. Furthermore, since the
CID; =argmax(C; ;) “) number of mean shift iterations depends on thed@enty
! selected) initial kernel position, we ran both aitjons
) multiple times with the same parameterization, and
3.2 Cluster merging procedure compared the average running times. Moreover aluste

i merging was done using the same CPU-based alggrithm
The number and structure of final clusters are rooed therefore time consumption of the mode merging

with cluster merging, which currently runs on the\C procedure was not part of the comparison.

Clusteri andj are joined, if they satisfy the criteria: All calculations were run on a single PC equippéthw
C1l. The two clusters have a common border in terdgg of RAM and an Intel E6400 CPU running at
of the eight-neighbor connectivity. 2.13GHz. The GPGPU was an nVidia G92 GPU operating
C2. X =X [ <h- with 112 stream processors and 1024MB of video RAM.

In this case the position of the mode is recaledlatet 5 Results
NP; andNP; denote the number of pixels in clusteendi
respectively, and let us say that both C1 and @2ri@  Op average, the GPGPU was able to segment the scene
information carried by modg, of the newly formed cluster gisplays an example image from the BSDS among avith

1S segmentation made by human observer on 1/d, and our
_ NR Uz + NP, Lz, 5 segmentation results made on the different comiputat
- NP + NPJ- ) platforms on 1/b and 1/c.

i.e. it is a weighted average of the conjoined diiae 6. Conclusion

procedure runs iteratively until no classes cambeged. ] ]
We successfully implemented the nonparametric mean

4. Evaluation framework shift clustering algorithm using the joint spatiahge
feature space onto the many-core GPGPU, for whieh w

To provide comparative results to the proposed @PGpsed our own voting procedure for mode selectidme T
algorithm, the coarse grid CPU-optimized mean sH#PGPU algorithm proved to run almost three timestefa
procedure was implemented with as few differencemf than its CPU variant. Later on we plan to enhare t
the GPGPU version as possible. The main differeaceSystem using the acceleration strategies described
that while the GPGPU runs the MSMS version, the CEgction 2.2.
does the mode calculation one by osiadle simultaneous
mode seeking, SSMS). References
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Ougjput of GPGPU segmentation

d) Reference cluster map given by the BSDS e)t€@lusap obtained with CPU segmentation f) Clustap obtained with GPGPU segmentation
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