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Abstract– This paper presents the parallel 
implementation of a nonparametric image segmentation 
method: the mean shift algorithm using joint spatial-range 
feature space. By considering spatial information, the 
mean shift can distinguish topographically differing 
objects in the scene, but this feature costs additional 
computational demand through increased number of kernel 
functions.  The proposed algorithm runs the mode-defining 
kernel iterations parallel by utilizing the many-core 
processor architecture present in the general-purpose 
graphics processing unit (GPGPU). We use our own voting 
procedure for pixel-cluster assignment. Numerical 
evaluation showed that our solution efficiently speeds up 
the image clusterization procedure.  
 
1. Introduction 

 
Scene segmentation is one of the most common, yet 

most versatile tasks of image processing. Among today’s 
most advanced segmentation approaches, such as graph 
cuts [1][2], normalized cuts [3], or various types of k-
means [4][5], the mean shift segmentation is one of the 
most studied and applied nonlinear techniques. Basically 
having no a-priori knowledge demand, it can dynamically 
set the number of segmented clusters through a 
nonparametric framework. Our solution gives a notable 
speed-up to the mean shift method, by parallelizing its 
internal structure, and instead of running it on a CPU unit, 
we use a many-core programmable general-purpose 
graphics programming unit (GPGPU) [6]. For now, we did 
not aim to overcome the quality of the original algorithm 
implemented on the CPU, rather to show that our GPGPU-
based implementation can achieve similar segmentation 
accuracy with considerably lower time demand. 

The paper is organized as follows: in the first part of the 
second section we give an overview of the generic, joint 
feature space mean shift paradigm. The second part of the 
section briefly summarizes related works about possible 
speed-up strategies; while the third part describes the 
disadvantage behind the usage of the spatial domain. The 
third section explains our solution of speeding up this task. 
Section four presents the evaluation framework, which is 
followed by the numerical results in section five. The 
paper is closed with a short summary in the sixth section.  
 
 

2. Algorithmic background 
 

After the mean shift procedure was introduced by 
Fukunaga and Hostetler [7] in 1975, it was Cheng [8] who 
pointed out 20 years later that the mode seeking process of 
the algorithm is a parallel hill climbing method, applying 
the clusterization algorithm in the Hough space. Following 
another half a dozen of years of smoldering, Meer and 
Comaniciu gave an extensive overview [9] of the 
segmentation framework, using it for image segmentation 
and discontinuity preserving smoothing. Their approach 
concerning color images is briefly summarized in 
subsection 2.1. 

 
2.1 Mean shift in the joint feature space 

 
The mean shift procedure considers its feature space as 

an empirical probability density function. A local 
maximum of this function (namely, a region over which it 
is highly populated) is called a mode. Mode calculation is 
formulated as an iterative scheme of mean calculation, 
which takes a certain number of feature points and 
calculates their mean value by using a weight kernel 
function. Meer and Comaniciu used a composite feature 
space consisting of both topographical (spatial) and color 
(range) information of the image. As a result, each feature 
point in this space is represented by an χ=(xr;xs) 5D vector 
which consists of the corresponding pixel’s xs=(x,y) 2D 
position in the spatial lattice, and its xr 3D color value in 
the applied color space (e.g., the xr=(Y,Cb,Cr) 
coordinates). The iterative scheme for the calculation of a 
mode is as follows: let χi and zi be the 5D input and output 
points in the joint feature space for all i=[1,n], n being the 
number of pixels in color image I. 
Then for each i 

1. Initialize k = 1 
2. Compute the iterative formula 
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until the mean shift vector k
i

k
i χχ −+1  falls under a 

given threshold, where g denotes the Gaussian kernel 
function, with hs and hr being the spatial-, and range 
bandwidth parameters respectively. 

3. Allocate 1+= k
iiz χ ; that is, output value zi is given by 

feature point χi after the final (k+1)st step. 
 
Those zi points, which are adequately close to each 

other, are concatenated resulting discrete, non-overlapping 
clusterization of the input image. All pixels in the cluster 
inherit the color of its mode. 

The main advantage of applying the joint feature space 
is that the algorithm became capable of discriminating 
scene objects based on their color and position; making 
mean shift a multi-purpose, nonlinear, nonparametric tool 
for image segmentation. 

On the other hand the disadvantage of the algorithm, as 
it was specified earlier by Cheng is its high computational 
complexity of O(n2). 
 
2.2 Acceleration strategies 

 
Comaniciu and Meer introduced an efficient technique 

called the coarse grid [10] in order to highly reduce 
complexity. Briefly, they perform random tessellation of 
the feature space with m << n kernels, execute mean shift 
segmentation (resulting zi, i=[1,m] modes), merge close 
modes (as in [9]), then assign each χi feature point to the 
closest zj cluster-defining mode. They showed that this 
approach is capable of producing technically equal 
segmentation quality with a computation demand of 
O(m*n) << O(n2). 

Ever since, several alternative techniques have been 
proposed to achieve speed-ups, e.g. through space 
discretization and downsampling [11], local subsets [12], 
expectation-maximization [11][13], hierarchical solutions 
[14][15], and the Newton iteration method [16][17]. 
Although our current system does not use these alternative 
techniques, later on most of them can easily be added to 
our framework enhancing its speed and reducing its time 
demand. 
 
2.3 Over-segmentation: the advantage’s tradeoff 

 
The clear advantage brought by the usage of the spatial 

domain is the topographical discriminative potential: 
objects with similar or even the same color can be 
distinguished, if they are topographically distinct. On the 
other hand spatial discrimination of two discrete objects 
requires the usage of two kernels. Therefore in the case of 
very detailed images, spatial filtering involves a 
computational tradeoff: proper coverage of the feature 
space necessitates the usage of numerous kernels. 
 

 
 
 

3. Our approach 
 
As a result, both the original and the improved 

algorithms follow the bottom-up strategy, when the output 
is a result of over-segmentation, which is followed (off-
line), or accompanied (on-line) by a cluster merging 
procedure. 

We considered the off-line mean shift algorithm, which 
is divided into two main subtasks: the mode calculation 
and the cluster merging procedure. Mode calculation 
algorithm is a highly data parallel [18] task: the same 
iterative procedure is performed on the elements of the 
feature space with each kernel having a different seed 
point. Nowadays many-core GPGPUs are publicly 
available at a reasonable price, having more than a 
hundred distinct stream processors, which can effectively 
handle data-parallelism-related tasks. We implemented the 
mode seeking task on a GPGPU, and compared its 
performance with the CPU implementation of the 
procedure. 
 
3.1 GPGPU implemented mode calculation 

 
Our algorithm applies Comaniciu and Meer’s coarse 

grid technology [10] on the joint feature space. But instead 
of running the iteration specified by eq. 1 on a single 
kernel until saturation, we extend this computational 
framework by running the iterative algorithm 
simultaneously on several mean shift kernels, which we 
call multiple simultaneous mode seeking (MSMS). 

 The MSMS begins by selecting m initial mean points 
randomly in the joint feature space. The mean shift 
iteration is then started from these seed points by using 
Gaussian kernel functions having a common (hs,hr) spatial-
range bandwidth parametrization for each kernel. The 
procedure is terminated, when the length of each kernel’s 
mean shift vector becomes smaller than a pre-defined 
threshold value. 

In order to properly assign all feature points to the 
corresponding mode, we constructed a voting system. In 
every iteration of mode seeking, for each kernel we 
compute pixel-wisely the following cumulative confidence 
value (CCV): 
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with 
 00 =

i,j
C  (3) 

where k
jiC ,
denotes the confidence value of pixel i at the 

kth iteration for kernel j. Note that the calculation of the 
CCV does not require additional computation, as it is a 
part of the mean shift iteration’s numerator. Let 

jiC ,
denote 

the final CCV computed in the last iteration and let CIDi 
stand for the ith pixel’s cluster ID. After the modes are 
retrieved and every

jiC ,
has been obtained, each image 
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pixel gets associated with a mode using the following rule: 
 

 
j

jii CCID )max(arg ,=  (4) 

 
3.2 Cluster merging procedure 

 
The number and structure of final clusters are constructed 
with cluster merging, which currently runs on the CPU. 
Cluster i and j are joined, if they satisfy the criteria: 

C1. The two clusters have a common border in terms 
of the eight-neighbor connectivity. 

C2. 
rjrir hxx <− ,,
. 

 

In this case the position of the mode is recalculated. Let 
NPi and NPj denote the number of pixels in clusters i and j 
respectively, and let us say that both C1 and C2 criteria 
holds and the two are merged into cluster k. Then the color 
information carried by mode zk of the newly formed cluster 
is 

 
ji

jjii
k NPNP

zNPzNP
z

+
∗+∗

=  (5) 

 

i.e. it is a weighted average of the conjoined duet. The 
procedure runs iteratively until no classes can be merged.  
 
4. Evaluation framework 

 
To provide comparative results to the proposed GPGPU 

algorithm, the coarse grid CPU-optimized mean shift 
procedure was implemented with as few differences from 
the GPGPU version as possible. The main difference is 
that while the GPGPU runs the MSMS version, the CPU 
does the mode calculation one by one (single simultaneous 
mode seeking, SSMS). 

Image segmentation is an ill-posed task [19], but several 
publicly available image corpora exist to make algorithms 
comparable. For evaluation purposes, we selected 50 color 
images from the Berkeley Segmentation Dataset (BSDS), 
[20] for which multiple human-made segmentation maps 
are provided as reference. Let the name best parameter 
pair (BPP) denote a pair of (hs, hr) kernel bandwidth 
parameters that result in a closest-to-the-reference 
segmentation for a given image of our evaluation image 
set. 

In order to determine such pairs, the CPU algorithm was 
utilized the following way: 64 alternative segmentations 
were made for each evaluation image using 8 x 8 different 
(hs, hr) bandwidth values for each of the 50 images. During 
the process, the algorithm computed and logged the 
number of clusters before and after the merging procedure, 
and the elapsed time of the mode seeking. Then, 
depending on the number of provided BSDS references 1 
to 4 BPPs were selected for each image, resulting a total of 
117 pairs. Next, the GPGPU algorithm was run on the 
evaluation set using the corresponding BPPs, and finally 
the elapsed time of the mode seeking was compared to the 
CPU algorithm. It is worth to note that the GPGPU 

runtime includes the time-demanding CPU to GPGPU and 
GPGPU to CPU data transfers. Furthermore, since the 
number of mean shift iterations depends on the (randomly 
selected) initial kernel position, we ran both algorithms 
multiple times with the same parameterization, and 
compared the average running times. Moreover cluster 
merging was done using the same CPU-based algorithm; 
therefore time consumption of the mode merging 
procedure was not part of the comparison. 

All calculations were run on a single PC equipped with 
2GB of RAM and an Intel E6400 CPU running at 
2.13GHz. The GPGPU was an nVidia G92 GPU operating 
with 112 stream processors and 1024MB of video RAM.  

 
5. Results 

 
On average, the GPGPU was able to segment the scene 

2.997 times faster under the same circumstances. Fig. 1/a 
displays an example image from the BSDS among with a 
segmentation made by human observer on 1/d, and our 
segmentation results made on the different computational 
platforms on 1/b and 1/c. 

 
6. Conclusion 

 
We successfully implemented the nonparametric mean 

shift clustering algorithm using the joint spatial-range 
feature space onto the many-core GPGPU, for which we 
used our own voting procedure for mode selection. The 
GPGPU algorithm proved to run almost three times faster 
than its CPU variant. Later on we plan to enhance the 
system using the acceleration strategies described in 
Section 2.2. 
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[7] K. Fukunaga, L. D. Hostetler, “The estimation of the 
gradient of a density function, with applications in pattern 
recognition,” IEEE Transactions on Information Theory, 
vol. 21, pp. 32–40, 1975. 
[8] Y. Cheng, “Mean shift, mode seeking, and clustering,” 
IEEE Transactions on Pattern Analysis and Machine 
Intelligence, vol. 17, pp. 790–799, 1995.  
[9] D. Comaniciu, P. Meer, “Mean shift: A robust 
approach toward feature space analysis,” IEEE 
Transactions on Pattern Analysis and Machine 
Intelligence,  vol. 24, 2002, pp. 603–619. 
[10] D. Comaniciu, P. Meer, “Distribution free 
decomposition of multivariate data,” Pattern Analysis and 
Applications, vol. 2, pp. 22–30, 1999. 
[11] M.A. Carreira-Perpinan, “Acceleration strategies for 
Gaussian mean-shift image segmentation,” CVPR, 2006. 
[12] K. Zhang, M. Tang, J.T. Kwok, “Applying 
neighborhood consistency for fast clustering and kernel 
density estimation,” Proc. CVPR 2005, pp. 1001 – 1007, 
2005. 
[13] M.A. Carreira-Perpinan, “Gaussian Mean-Shift is an 
EM algorithm,” IEEE Transactions on Pattern Analysis 
and Machine Intelligence,  vol. 29, 2007, pp. 767-776. 
[14] S. Paris and F. Durand, “A topological approach to 
hierarchical segmentation using mean shift,” Proc. CVPR, 
2007. 
[15] D. DeMenthon. “Spatio-temporal segmentation of 
video by hierarchical mean shift analysis,” Statistical 
Methods in Video Processing Workshop, 2002. 
[16] M.A Carreira-Perpinan, “Mode-finding for mixtures 
of Gaussian distributions,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 22(11) pp.  1318–
1323, November 2000. 
[17] C. Yang, R. Duraiswami, D. DeMenthon, L. Davis, 
“Mean-shift analysis using quasi-Newton methods,” Int. 
Conf. on Image Processing, 2003. 
 

 
[18] W.D. Hillis, J. Guy, L. Steele, “Data parallel 
algorithms,” Communications of the ACM, vol. 29, 1986, 
pp. 1170-1183. 
[19] T. Poggio, V. Torre, “Ill-posed problems and 
regularizaron analysis in early vision,” Artificial 
Intelligence Lab. Memo, vol. 773. 
[20] D. Martin, C. Fowlkes, D. Tal, J. Malik, “A database 
of human segmented natural images and its application to 
evaluating segmentation algorithms and measuring 
ecological statistics,” Proceedings of the Eighth IEEE 
International Conference on Computer Vision. ICCV 
2001, Vancouver, BC, Canada, pp. 416-423. 

Figure 1. An example of segmentation made on the different computation platforms. Segmented images are result of mode seeking followed by 
cluster merge.  (hs, hr) = (0.08,0.01), m = 54 clusters were merged into 4 (CPU case) and 5 (GPGPU case) 

 

- 152 -


	Navigation page
	Session at a glance
	Technical program

