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Abstract—Recently, an effective network optimization

method was introduced to improve the ability to resist ma-

licious attacks and the optimized networks have an typical

onion-like structure. So far, the study on onion-like net-

works mainly focused on their structural properties and the

enhancement of attack robustness. However, in our paper,

we investigate one aspect of dynamical processes in com-

plex networks, namely synchronization behavior. Through

extensive numerical simulations, it is found that solely en-

hancing the network robustness can lead to the reduction

of the ability to achieve synchronization. Current result-

s are beneficial for us to deeply understand the dynamical

properties and patterns in the complex networked systems.

1. Introduction

Many real-world complex systems can be characterized

and analyzed by networks or graphs with complex topolo-

gies [1, 2]. Especially, in the past decade many theoret-

ical and experimental works have been performed to an-

alyze the attack robustness of a vast variety of differen-

t networked systems. Albert et al. [3] found the “robust
yet fragile” generic property of scale-free networks: scale-

free networks display an unexpected degree of robustness

to random failure; however, they are extremely vulnerable

to intentional attacks. This work has triggered successive-

ly enormous interest on the effect of different topological

properties on the attack robustness of networks, including

the degree distribution, centrality, assortativity, the interac-

tion strength of the edges and so on [4, 5, 6]. Meanwhile,

many researchers also have devoted a great deal of efforts to

the study of how to construct optimal networks and how to

make existing networks more robust against random and/or

targeted attacks [7].

In a recent work [8], Schneider et al. propose a new

measure for network robustness under malicious attack-

s on highly connected nodes. For an existing network

with a prescribed degree distribution, based on a sim-

ple greedy algorithm, they also present an link-rewiring

method which can significantly improve the robustness. It

has been discovered that independent of the degree distri-

butions of the networks, the most robust structures exhibit

an “onion-like” topology in which high-degree nodes form

a core surrounded by rings of nodes with decreasing de-

gree [9]. However, although it is proved that this opti-

mization method is effective in increasing the robustness

of networks against malicious attacks, would the structural

adjustment affect other dynamical behaviors occurring in

networks? That is the motivation of our following study. In

this paper we study one aspect of dynamical behaviors in

complex networks, namely synchronization. Synchroniza-

tion is the mechanism responsible for numerous phenome-

na in natural world and modern society, which has attracted

a lot of research efforts [10].

The rest of the paper is organized as follows. In section

2, the novel quantity R used to evaluate network’s resilience

resisting malicious attacks is presented. After that, the gen-

eral framework for synchronization stability of coupled dy-

namical systems is briefly discussed. In section 3, numer-

ical simulations are performed to analyze the the relation-

ship between the robustness and the synchronizability of

scale-free networks; moreover, the change of synchroniz-

ability during optimization process is investigated. Finally

we conclude the whole paper in the last section.

2. Models

2.1. Dynamical network model and the stability crite-
ria for synchronization

Consider a dynamical network consisting of N coupled

identical nodes, with each node being an n-dimensional dy-

namical system, whose state equation can be described by

ẋi = f (xi) − c
N∑

j=1

ai jH(x j), i = 1, 2, . . . ,N, (1)

where f (·) is a given nonlinear function, xi =

(xi1, xi2, . . . , xin) ∈ R
n are the state variables of node i,

c > 0 is the coupling strength. H(·) : Rn → R
n is called

the inner linking function. A = {ai j}N×N , which is called

the topological matrix, represents the coupling configura-

tion of the underlying network. Only considering symmet-

ric and diffusive coupling, A is a Laplacian matrix. For a

connected network, A is irreducible, 0 is an eigenvalue of A
with multiplicity 1, and all the other eigenvalues are strictly

positive, i.e. 0 = λ1 < λ2 ≤ · · · ≤ λN .

The dynamical network (1) is said to be (asymptotical-

ly) synchronizedif x1(t) = x2(t) = · · · = xN(t) → s(t), t →
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∞ [11]. In addition, according to the shape of synchronized

region S ⊆ R, dynamical networks can be divided into sev-

eral types:

(i) Type I networks with an unbounded synchronized

region S ∈ (−∞, α2], α2 < 0: the eigenvalue λ2 of A deter-

mines the synchronizability, the larger the λ2, the easier the

synchronization is, and vice visa [11];

(ii) Type II networks with a bounded synchronized re-

gion S ∈ [α1, α2],−∞ < α1 < α2 < 0: a larger value of

the ratio λN/λ2 corresponds to poor synchronizability, and

vice versa [12];

(iii) dynamical networks with S = φ, the coupled system

can not achieve any synchronization.

2.2. Optimized network model

Recently, Schneider et al.[8] proposed a novel measure,

node robustness R, to evaluate the robustness of networks

under attacks considering the size of the largest connected

component during all possible malicious attacks, namely

R =
1

N

N−1∑

q=1

S (q), (2)

where N is the total number of nodes in the initial network

and S (q) denotes the relative size of the largest connect-

ed component after removing q nodes with the highest de-

grees. Generally, the larger the value of R, the more robust

the network resisting intentional attacks on high degree n-

odes.

With the robustness criterion R in mind, the network op-

timization problem can be defined as follows: given a net-

work G with the predefined degree distribution p(k), how to

maximize R while keeping both the degree distribution and

the degree of every node unchanged. Based on greedy algo-

rithm, an edge-swap method was developed to improve net-

work robustness resisting intentional attacks, while keeping

the degrees of per node invariant and the whole network

connected. A simple example is shown in Fig. 1.

Figure 1: Demonstration of edge-swap in a network. The

initial network G0 (a) is with N = 6 nodes, L = 8 edges and

R0 ≈ 0.278. After performing the swap on edges (i.e. edges

(1, 5) and (2, 3) to new edges (1, 3) and (2, 5)), the resultant

network G1 (b) gets an improved R value, R1 = 0.361.

3. Numerical simulation and analysis

3.1. Robustness measure R of scale-free networks
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Figure 2: The values of robustness measure R of scale-free

networks with N = 1000 and 〈k〉 = 4(•), 6(�), 8(�) for

different scaling exponents γ.

It can be observed from Fig. 2 that, R increases as the

scaling exponent γ becomes larger, which indicates that

scale-free networks with larger γ are more robust to resist

malicious attacks and vice versa. For all the power-law

distributions, a smaller γ corresponds to a broader distribu-

tion, thus corresponding network becomes more heteroge-

nous in connectivity. Consequently, for scale-free networks

with fixed number of nodes and links, the smaller the value

of γ, the more vulnerable the network resisting malicious

attacks on hub nodes.

Furthermore, scale-free networks with fixed exponen-

t are examined. As 〈k〉 becomes larger, R is observed to in-

crease(see Fig. 2), which indicates that scale-free networks

with larger 〈k〉 have higher ability to resist attacks. A larg-

er 〈k〉 indicates that more links exist in the network, thus

leading to the increase of the extent of alternative path re-

dundancy between nodes and improved invulnerability of

the whole network.

3.2. Synchronizability of optimized scale-free networks

It can be concluded that the impact of a particular cou-

pling topology on the system’s ability to synchronize can

be characterized by the following quantities: λ2 for Type I
and λN/λ2 for Type II networks. Now we will investigate

the change of the synchronizability of dynamical systems

with scale-free structures before and after the optimization

mentioned above. The inset of Fig. 3(b) presents the op-

timization results of scale-free networks with N = 1000,

〈k〉 = 4 and different γ. At each step T , with several edge

swaps, a 20% increase of R is recorded. Thus the R of re-

sultant network after optimization is almost twice as much

as the initial value.

In order to explore the stability of synchronization of

optimized networks, the eigenvalues of corresponding net-
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Figure 3: The eigenvalues λ2(a) and λN/λ2(b) of dynamical

scale-free networks during optimization.

works are obtained numerically and the behaviors with the

optimization step T are exhibited in Fig. 3. It can be found

that λ2 (Fig. 3(a)) becomes smaller and the ratio λN/λ2

(Fig. 3(b)) becomes larger with step T , which strongly

demonstrates that, for both Type I and Type II dynami-

cal systems the optimized networks with improved R have

poorer stability to achieve synchronization.

Furthermore, dynamical scale-free networks with fixed

N and γ for different 〈k〉 are also investigated (see Fig. 3(c)

and Fig. 3(d)). The inset of Fig. 3(d) displays the opti-

mization results of scale-free networks with N = 1000,

γ = 3 and 〈k〉 = 4(•), 6(�), 8(�). At each optimiza-

tion step T , a 10% increase of R is recorded. Thus after

optimization(T = 19), the resultant networks have doubled

R values comparing to the initial networks. The eigenval-

ues which measures the ability to achieve synchronization

of dynamical scale-free networks are exhibited in Fig. 3(c)

and Fig. 3(d). Clearly, with the optimization step T , the

eigenvalue λ2 is observed to decease(Fig. 3(c)),and λN/λ2

is observed to increase(Fig. 3(d)), which implies the re-

duced synchronizability during optimization.

3.3. Discussion

Noticeably, during network optimization the link-

rewiring method keeps the degree of every node unchanged

while improving the robustness. In other words, networks

have the same degree distribution before and after the opti-

mization. Previous study has investigated the effect of de-

gree distribution and degree heterogeneity on the synchro-

nization behaviors of dynamical networks [10]. However,

our findings demonstrate that the degree heterogeneity of

underlying topology has no direct relationship with the a-

bility to achieve synchronization.

As shown in Fig. 4, optimized network exhibits a type

of “onion-like” topology, i.e. a core composed of high-

degree hub nodes exists which is hierarchically surrounded

by rings of nodes with decreasing degree. Previous study

has shown that node load can be regarded as a suitable pre-

dictor for the synchronizability on complex dynamical net-

works [13]. Since many paths pass through the “center”

nodes, they tend to get overloaded, consequentially lead-

ing to the loss of the synchronized state information to be

exchanged between dynamical nodes.

4. Conclusions

By utilizing a recently introduced optimization method,

scale-free networks can be optimized with increased ability

to resist malicious attacks. In our study, firstly, we exam-

ined the relationship between the node robustness measure

R and two important topological parameters: the scaling

exponent γ and the average node degree 〈k〉.
Next, we explored how the synchronization is affected

by the optimization aiming at increasing the robustness a-

gainst attacks. Large quantities of numerical results veri-
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Figure 4: Visualization of network topologies of a scale-free network before and after optimization. The networks are

with size N = 50, average node degree 〈k〉 = 4 and degree distribution p(k) ∼ k−3. Nodes with similar degree have

the same color. Edges between nodes with equal degree are highlighted with bold black lines. (a) initial network with

R = 0.1404 ; (b) onion-like topology of optimized network with enhanced R = 0.3828.

fied that, for both Type I and Type II dynamical systems,

the synchronizability of optimized scale-free networks is

suppressed as R is increased. Thus, our findings strongly

demonstrate that a special attention should be paid to the

tradeoff between maximizing the attack robustness and im-

proving the synchronizability in system design. These re-

sults can provide insights into deeply understanding the dy-

namical properties of large-scale complex networked sys-

tems.
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