
Multiple Floating-point Matrix Multiplication by Level 3 Operations.

Katsuhisa Ozaki†, Takeshi Ogita‡,†, Siegfried M. Rump∗ and Shin’ichi Oishi†,∗∗

†Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjyuku-ku, Tokyo, 169-0075 Japan

‡Department of Mathematical Sciences, Tokyo Woman’s Christian University
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

* Institute for Reliable Computing, Hamburg University of Technology
Schwarzenbergstr. 95, 21071 Hamburg, Germany

** CREST, Japan Science and Technology Agency
Email: k ozaki@aoni.waseda.jp

Abstract—This paper is concerned with accurate matrix
multiplication. First we define a form which is expressed
by an unevaluated summation of some floating-point num-
bers in order to have many bits. We call this form ‘multiple
floating-point numbers’. We propose an algorithm which
computes matrix multiplication on this form and outputs
an accurate result by mainly using Level 3 operations in
BLAS. It is easy for the proposed algorithm to implement
and compute in parallel. Numerical results are also pre-
sented in order to illustrate the efficiency of the proposed
method.

1. Introduction

This paper is concerned with accurate matrix multipli-
cation A · B for A ∈ Rm×n, B ∈ Rn×p. Assume that each
element of both input matrices has much significant bits
than single or double precision floating-point numbers de-
fined by IEEE 754. Our purpose is to obtain an accurate
result of such matrix multiplication. Such matrix multipli-
cation is required when we compute an inverse matrix of an
ill-conditional coefficient matrix [4]. When numerical li-
braries supporting multi-precision floating-point arithmetic
are used with this view, for example [11, 1], an accurate re-
sult can be obtained.

In our previous work [5], we defined ‘the multiple
floating-point numbers’. The number is represented by
an unevaluated summation of usual floating-point numbers
defined by IEEE 754. Therefore, it is possible for this for-
mat to have much precision. When each element in a ma-
trix is represented by multiple floating-point numbers, we
call the matrix a multiple floating-point matrix. We have
developed an algorithm of computing dot products for such
format by exploiting an accurate dot product algorithm [7].
This discussion can straightforwardly be extended to ma-
trix multiplication so that we obtain an accurate result of a
product of multiple floating-point matrices.

In this paper, we propose a different strategy to compute
accurate matrix multiplication with multiple floating-point
numbers by using mainly level 3 operation in optimized
BLAS (Basic Linear Algebra Subprograms). For example,

Goto BLAS, Intel Math Kernel Library and ATLAS are
well-known as the optimized BLAS. It is particularly no-
table in such optimized BLAS that performance of ‘gemm’,
routines for matrix multiplication, is nearly peak. More-
over, these routines are automatically parallelized in multi-
threads environment. Dominant computations in the pro-
posed method depend on such routines so that it receives
much benefit from the routines in terms of the performance
and the parallelization. At the end of this paper, numer-
ical examples are shown to illustrate the efficiency of the
proposed method.

2. Notation and multiple floating point numbers

In this section, we introduce notation and the definition
of multiple floating-point numbers. All computations are
performed by floating-point arithmetic defined by IEEE
754. In this paper, we use the double precision numbers
and their arithmetic. Let F be a set of floating-point num-
bers and u = 2−53 be unit roundoff. MATLAB notation is
used to describe algorithms for readability.

A normalized double precision floating-point number
defined by IEEE 754 has 53 significant bits. Let a, b ∈ F
and suppose a and b are not overlapped each other. An
unevaluated summation a + b has minimally 106 bits. Gen-
erally, let d be an unevaluated summation of floating-point
numbers:

d =

n∑

i=1

d(i), d(i) ∈ F

If all pairs of d(i) and d(j) are not overlapped each other and
the following inequalities hold:

u j−i|a(i)| ≥ |a(j)|, i < j (1)

Then we call d ‘multiple floating-point numbers’ 1. From
this definition, d(1) has leading 53 bits. Totally, d has mini-
mally 53n bits.

1In some papers, it is also called non-overlapping expansion. Remark
that there are some definitions for non-overlapping expansion.

2009 International Symposium on Nonlinear Theory and its Applications
NOLTA'09, Sapporo, Japan, October 18-21, 2009

- 159 -

A(2) A(3)D(1) D(2) D(3) D(4) D(5) D(6) D(7) D(8)A(1)
Figure 1: Relation of A and D.

Remark 1 Even if we use multiple floating-point numbers,
the maximum or minimum value is (almost) the same to that
of a floating-point number since ranges of overflow and un-
derflow of multiple floating-point number are the same to
usual floating-point number.

3. Proposed method

In this section, we propose the method which computes
matrix multiplication for multiple-floating-point matrices
by using level 3 operation in BLAS. Let A and B be multi-
ple floating-point matrices:

A =

k∑

i=1

A(i), B =

k∑

j=1

B(j), A ∈ Fm×n, B ∈ Fn×p

First, we transform A and B to a summation of floating-
point matrices respectively such that

D =

r∑

i=1

D(i) =

k∑

i=1

A(i), E =

s∑

i=1

E(i) =

k∑

j=1

B(i), (2)

where r, s ≥ k (see Figure 1). If we specialize our previ-
ous work [6], then we can construct splitting algorithms in
order to satisfy (2) and

fl(D(i)E(j)) = D(i)E(j), 1 ≤ i ≤ r, 1 ≤ j ≤ s. (3)

Then, we can compute matrix multiplication A · B as fol-
lows:

AB =

r∑

i=1

D(i)
s∑

j=1

E(j) (4)

After expanding (4), it involves matrix multiplication rs
times. Therefore, matrix multiplication can be transformed
into a unevaluated summation of rs floating-point matrices
without rounding errors. If we use accurate summation al-
gorithms [7, 8, 2] after this transformation, we can obtain
an arbitrary accurate result.

We denote the splitting algorithm for this purpose as fol-
lows:

Algorithm 1 Let A be a multiple floating-point matrix as

A =

r∑

i=1

A(i), A(i) ∈ Fm×n.

The following algorithm transforms
∑

A(i) to
∑

D(i) in or-
der to satisfy (3). In MATLAB notations, A(i) = A{i} (cell-
array is used).

function D = Split A(A)
if iscell(A) == 0, A = {A}; , end
p = size(A{1}, 2);
Aindex = 1;
n = length(A);
count = 0;
while norm(A{1}, in f) = 0
µ = max(abs(A{1}), [], 2);
t = 2.ˆ(ceil(log2(µ)) + ceil((53 + log 2(p))/2));
σ = repmat(t, 1, p);
D{Aindex} = (A{1} + σ) − σ;
A{1} = A{1} − D{Aindex};
% data compression
if mod(count, 2) == 1

for i = 1 : n − 1
[A{i}, A{i + 1}] = TwoSum(A{i}, A{i + 1});

end
end
Aindex = Aindex + 1;
count = count + 1;

end
end

Here TwoSum is used in Algorithm 1. The following is
the detail of this algorithm:

Algorithm 2 For a, b, x, y ∈ F, the following algorithm
transforms a + b into x + y such that

a + b = x + y, x = fl(a + b), u|x| ≥ |y|

where y holds the error of fl(x + y) exactly.

function [x, y] = TwoSum(a, b)
x = a + b;
bvirt = x − a;
avirt = x − bvirt;
bround = b − bvirt;
around = a − avirt;
y = around + bround;

Next we present an algorithm which transforms
∑

B(i) to∑
E(i) in order to satisfy (3).

Algorithm 3 Let B be a multiple floating-point matrix as

B =

r∑

i=1

B(i), B(i) ∈ Fn×p.

The following algorithm transforms
∑

B(i) to
∑

E(i) in or-

- 160 -

der to satisfy (3).

function E = Split B(B)
if iscell(B) == 0, B = {B}; , end
p = size(B{1}, 1);
Bindex = 1;
n = length(B);
count = 0;
while norm(B{1}, in f) = 0
µ = max(abs(B{1}));
t = 2.ˆ(ceil(log2(µ)) + ceil((53 + log2(p))/2));
σ = repmat(t, p, 1);
E{Bindex} = (B{1} + σ) − σ;
B{1} = B{1} − E{Bindex};
% data compression
if mod(count, 2) == 1

for i = 1 : n − 1
[B{i}, B{i + 1}] = TwoSum(B{i + 1}, B{i});

end
end
Bindex = Bindex + 1;
count = count + 1;

end
end

The following is the proposed method of computing accu-
rate matrix multiplication A · B for multiple floating-point
matrices A and B.

Algorithm 4 Let A and B be multiple floating-point matri-
ces as

A =

r∑

i=1

A(i), B =

s∑

j=1

B(i), A(i) ∈ Fm×n, B(i) ∈ Fn×p.

The following algorithm computes matrix multiplication A ·
B.

function C = mul mul(A, B)
D = Split A(A);
E = Split B(B);
Aindex = length(D);
Bindex = length(E);
index = 0;
for i = 1 : Aindex

for j = 1 : Bindex
index = index + 1;
G{index} = D{i} ∗ E{ j};

end
end
C = Accrate sum(G);

end

In Algorithm 4, Accrate sum(G) computes the summa-
tion

∑n
i=1 G{i} by algorithms in [9, 2, 7, 3].

The computations of matrix multiplication are dominant
in our method in terms of computational costs. We just
exploit the routine in optimized BLAS for such expensive
computations. As another advantage, when we compute the

matrix multiplication on multi-cores environment, the code
for our algorithm needs not to be changed for paralleliza-
tion. We only change the constant for number of threads so
that it is easy for our method to perform parallel computa-
tions on the computational environment of the symmetrical
multi-processor.

Remark 2 If we implement accurate summation algo-
rithms on MATLAB, the performance is very low due to the
interpretation overhead. By using external interface, this
point can be overcome.

4. Numerical examples

In this section, we present numerical examples to illus-
trate the efficiency of the proposed method. Let A and B be
represented by multiple floating-point matrices as

A =

k∑

i=1

A(i), B =

k∑

j=1

B(j), A(i) ∈ Fn×n, B(j) ∈ Fn×n.

(5)
We check the performance of the following methods:

• MPFR [11] 2

• the proposed method (Algorithm 4)

Numerical examples are tested on Ubuntu 7.10 (64 bit OS)
with Xeon 2.5 GHz and MATLAB 2007b 3. Amount of
memory installed in the computer is 8 GByte. First, dimen-
sion of matrices n and a number of the summation k in (5)
is set as n = 500, 1000, 2000 and k = 2, 3. . . . , 10, respec-
tively. We use SumK (described in [3]) as Accrate sum in
Algorithm 4. We set a precision as 53k in MPFR. Tables
1 to 3 shows the computing times for n = 500, 1000, 2000,
respectively with various k. The computing times are mea-
sured in seconds. Remark that when we implement the
examples by MPFR, we should first transform multiple
floating-point matrices into the form of MPFR (mpfr t).
However, the cost of this transformation is almost negli-
gible. The notation ‘−′ means that the algorithm stops due
to out of memory.

It can be confirmed from these tests that the proposed
method works faster. As a drawback, the proposed method
requires much amount of memory. When n = 2000 and
k ≥ 6, our method cannot work due to insufficient mem-
ory. If we set k ≥ 11, A(1) = randn(n) and B(1) =

randn(n), where randn(n) returns an n-by-n matrix contain-
ing pseudo-random values drawn from the standard normal
distribution, then under flow may occur in Algorithm 4. In
that case, our method may fail to output accurate result and
the performance is significantly low due to treating unnor-
malized numbers. The routine in MPFR can work faster in
such a condition.

2There is triple loops in a program of matrix multiplication. When
we make the program for matrix multiplication on MPFR, we choose the
suitable order of loop in terms of computing time.

3We use a single thread. We implement the code for MPFR to use
MATLAB’s external interface (mex) and compile it by GCC 4.1.3.

- 161 -

Table 1: Elapsed time (sec) for each method (n = 500)

k mpfr the proposed method ratio
2 15.5 2.11 7.34
3 20.4 3.79 5.38
4 24.1 7.07 3.40
5 28.8 9.94 2.89
6 30.3 13.3 2.27
7 33.9 17.1 1.98
8 39.8 22.4 1.77
9 48.9 28.6 1.71
10 51.2 34.1 1.50

Table 2: Elapsed time (sec) for each method (n = 1000)

k mpfr the proposed method ratio
2 121 15.2 7.9
3 160 29.4 5.44
4 187 44.2 4.23
5 222 62.3 3.56
6 234 94.0 2.48
7 264 121 2.18
8 307 156 1.96
9 353 193 1.82
10 402 229 1.75

5. Conclusion

We proposed the algorithm which computes accurate
matrix multiplication. In our algorithm, there is a draw-
back for amount of required working memory. Our algo-
rithm can work faster when the range of input data is suited
for multiple-floating point numbers. Moreover, it is easy to
implement for parallel computing. Even if an interpreted
language like MATLAB is used, our method can work fast
without external interface. Therefore, our algorithm works
portably.

Acknowledgments

This research was partially supported by CREST pro-
gram, Japan Science and Technology Agency (JST).

References

[1] David H. Bailey, ”A Fortran-90 Based Multiprecision
System”, ACM Transactions on Mathematical Soft-
ware, vol. 21, pp. 379-387, 1995.

[2] J. Demmel, Y. Hida, ”Accurate and Efficient Floating
Point Summation”, SIAM J. Sci. Comput., vol. 25, pp.
1214–1248, 2003.

Table 3: Elapsed time (sec) for each method (n = 2000)

k mpfr the proposed method ratio
2 963 98.7 9.75
3 1268 199 6.37
4 1471 301 4.88
5 1751 524 3.34
6 1847 - -
7 2075 - -
8 2430 - -
9 2792 - -
10 3209 - -

[3] T. Ogita, S. M. Rump, S. Oishi, ”Accurate sum and dot
product”, SIAM J. Sci. Comput., vol. 26, pp. 1955–
1988, 2005.

[4] S. Oishi, K. Tanabe, T. Ogita, and S.M. Rump, ”Con-
vergence of Rump’s method for inverting arbitrarily
ill-conditioned matrices”, J. Comput. Appl. Math., vol.
205, pp. 533-544, 2007.

[5] K. Ozaki, T. Ogita, S. M. Rump, S. Oishi, ”Ac-
curate Matrix Multiplication with Multiple Floating-
point Numbers”, Proceeding of 2007 International
Symposium on Nonlinear Theory and its Applications,
pp. 337-340, 2007.

[6] K. Ozaki, T. Ogita, S. M. Rump, S. Oishi, ”Accurate
Matrix Multiplication by using Level 3 BLAS Opera-
tion”, Proceeding of 2008 International Symposium on
Nonlinear Theory and its Applications, pp. 508-511,
2008.

[7] S. M. Rump, T. Ogita, and S. Oishi, ”Accurate
Floating-point Summation Part I: Faithful Rounding”,
SIAM J. Sci. Comput., vol. 31, pp. 189-224, 2008.

[8] S. M. Rump, T. Ogita, and S. Oishi, ”Accurate
Floating-point Summation Part II: Sign, K-fold Faith-
ful and Rounding to Nearest”, SIAM J. Sci. Comput.,
vol. 31, pp. 1269-1302, 2008.

[9] J. R. Shewchuk, ”Adaptive precision floating-point
arithmetic and fast robust geometric predicates”, Dis-
crete & Computational Geometry, vol. 18, pp. 305–
363, 1997.

[10] MATLAB Programming version 7, the mathworks.

[11] The MPFR Library: http://www.mpfr.org/

- 162 -

	Navigation page
	Session at a glance
	Technical program

