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Abstract—This paper studies pulse-coupled piecewise
constant spiking oscillators (PWCSOs) by a master-slave
coupling. Since the master PWCSO exhibits chaos, the
slave one exhibits chaotic response. If the parameter varies,
however, the behavior of the slave PWCSO can be like pe-
riodic trajectory in the phase plane. Using the derived 2-Dy: 1/
return map, we shows bifurcation phenomena and clarify 7“
its mechanism.

1. Introduction /.
\/ SW: sw: \/( \/ T

Various coupling systems by a pulse are investigated in I z | | r
many researchers [1]-[7]. Analysis of these systems is im-

portant to understanding and consideration to various SYRigure 1: Basic dynamics of the PWCSO foe 1,a > 1.

chronization phenomena, bifur.ca.tion phenqmena gnd $5) An unstable rect-spiral for< 1, (b) A phase plane, (c) A time
on. Also, applications for associative memories and imag&,main.

segmentations are studied, based on pulse-coupled neural

networks [4]-[7]. . . o )
. . . 2. Piecewise Constant Spiking Oscillators
This paper studies a pulse-coupled system of piecewise

constant spiking oscillators (PWCSOs). The PWCSO has |n order to consider a pulse-coupled system of the PWC-
PWC vector fields and piecewise linear trajectory [8]. WesQOs, as a preparation, we present two single PWCSOs [8],
consider a master-slave coupling system used two singig]. The first PWCSO has a trajectory with divergent vi-
PWCSOs. The master PWCSO exhibits chaotic attract@fation. The dynamics of the PWCSO with divergence vi-
and spike-train output. The slave PWCSO without the colpration can be described by Equation (1).

pling exhibits a stable equilibrium point. The dynamics

of the pulse-coupled PWCSOs is described as the follow- dx _

) o o . — = ksgnk — ay),

ing. The states of each unit vibrate with time evolution. If dr for x() < 1

the state of the master PWCSO reaches a threshold level, a dy _ ksgn) '

spike is outputted. The spike occurs that the states of each dr gne. Q)

PWCSO are reset to each base at the same time. Repeating  (x(7+),y(7+)) = (q. y(r))  if x(r) =1,
above the manner, the pulse-coupled PWCSO outputs the 1 for x(7) = 1
spike-trains. The response of the slave PWCSO is chaotic ) = { 0 for xérg # 1,

because of chaotic spike-trains of the master one. How-

ever, if the parameters varies, the trajectory of the slavherer, x, y andz are dimensionless time, state variables
PWCSO seems to be like periodic trajectory in the phagand an output, respectively. sghi the signum function:
plane. In order to analyze this "periodicity-like trajectory”,
we derive a two dimensional (2-D) return map. Using the
2-D map, we consider mechanism of the "periodicity-like sgn) = { 0 forx=0,
trajectory” and related bifurcation phenomena. -1 forx<o.

It should be noted that our result [10] has presentetihis PWCSO has three parametark andg. For simplic-
the pulse-coupled PWCSO, however it has discusseg, we restrict

within other parameter ranges and has not discussed the
"periodicity-like trajectory” with two or more periods. a>1 k=1 0<q<1l (2)

1 forx >0,
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Figure 2: Typical phenomena of the PWCSO ke 1, ! !
a=5.0andg = 0.2. (a) Chaotic attractor, (b) Time waveform ZT | | L
and spike-trains. !
®) Figure 4: Typical dynamics of the pulse-coupled PWCSOs
Vios X=¢ forky = 1, ks = -1,y = a > 1and 0< g; < 1 and
O<gp <1
L Yo = —aYn_1 = —@"}(yo—q) wherea = &l and O< a < 1

——> X is satisfied. Letr, be the time at which the trajectory
03 reaches a point (¢,). 7, is given byr, = (@"*-1)aY; +q.
Note that this system has an important propegty 7n.1.
Defining the timer,, at which the trajectory reaches the
origin: y(t) = 0, we obtain

Figure 3: Typical dynamics of the PWCSO foe -1. (a)
A stable rect-spiral in the phase plane, (b) An equilibrium point T =—aY1+0=-a(Yo—0d) +3q, (4)

fora= 5.0 andq = 0.3. ) )
wherer,, > 0 is guaranteed sincg < 0 and Eq. (3). Note

that we have described similar discussions in [9]. In this
The vector field of this PWCSO is shown in Figure 1 (a)PWCSO, the trajectory can reach a stable equilibrium point
Forx < 1, the trajectory can vibrate divergently around thgorigin) at finite time as shown in Fig. 3 (b). This "reacha-
origin and draw an unstable rectangular-spiral in the phasgglity” characteristic can cause interesting phenomena of a
plane. The dynamics of the PWCSO is shown in Fig. pulse-coupled system in Section 3. Note that the piecewise
(b) and (c). Below a threshold line = 1, the statex(r)  linear system can not have the "reachability” characteristic
vibrates divergently. If the trajectory reaches the thresholf].
line, the system outputs a spike= 1 and thenx is reset
to the base instantaneously. Repeating this manner, th
PWCSO can output spike-traizér). Fig. 2 shows typi-
cal phenomena. The PWCSO exhibits chaotic attractor and|n this section, we consider a pu]se_coup|ed system of

spike-trains. It should be noted that this PWCSO eXhibitﬁNo Sing|e PWCSO. The dynamics of the pu|se-c0up|ed

only chaotic behavior for parameter ranges of Eq. (2) [8].pwCSOs is described by following equations.
The second PWCSO has a trajectory with convergence

8 A pulse-coupled system of the PWCSOs

vibration. The dynamics of the PWCSO with convergence X1 = kisgnf — agy1) for xu(r) < 1 (5)
vibration is described by Eq. (1) where we restrict y1 = kisgné,) 1T ’
a>1 k=-1, 0<q<1l (3) (Xa(74), Ya(7+)) = (@1, Ya(7)) if xu(r) = 1, (6)
Xo = kosgn, — &
Sincek = -1, the vector becomes the opposite direction as { yj _ kzsgngz) 2Y2) for xi(r) <1, @)
compared with divergence vibration: the trajectory moves )
in a "clockwise” direction. In this case as shown in Fig. 3 ((74), Ya(r4)) = (G, Y2(7)) if xa(r) =1,  (8)
(a) and (b), the trajectory draws an stable rect-spiral. (1 for x(v) =1, 9
Here we consider the case where the trajectory does not 2r) = { 0 for xlsrg +1, ©)

reach the threshold, and define some key points to preseitare . » denotes diferentiation byr. This system has
characteristics of the trajectory. As shown in Fig. 3 (a), Wejy parametersy, as, ki, ko, g1 andap. For simplicity, we

assume that a trajectory starts from a pok(0}. ¥(0)) =  a5sume parameters ranges as the following.
(0.Yo) at = 0 whereyy < 2. Let (QY;) be n-th in-
tersection of the trajectory angaxis wheren is a pos- aiza>1 k=1 k=-1,

itive integer. Y; andY, are given byY; = yp — q and O<u<1 O<gp<1l (10)
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Figure 6: Definition of the 2-D return map in the phase
plane. (a) Unit 1, (b) Unit 2.
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Figure 5: Typical attractors of the pulse-coupled PWCSOs
forky =1,k, = -1,8 = a, = 5.0 andq; = 0.2. Fig. (a)is
"Unit 1" and Figs. (b) to (f) are "Unit 2". (a) Chaos, (lo} = 0.9,
(€) g, = 0.7, (d)g, = 0.6, (€)qo = 0.3, () g, = 0.1.

Figure 7: Typical 2-D return maps fdg = 1, k, = -1,

a =& =50andq; = 0.2. (a)gz = 0.7, (b)gz = 0.6, (c)

g = 0.3, (d)g, = 0.1. Fig. (a) to (d) correspond to Fig. 5 (c) to

(), respectively.

Note that [10] have studied ferl < g1 < 0 and-1 < ¢ <

0. In this paper, we call the PWCSO of Egs. (5) and (6)

"Unit 1”, and call the PWCSO of Egs. (7) and (8) "Unit 2”. behavior because of chaotic spike-train input from Unit 1,
The dynamics of the pulse-coupled PWCSOs is shown e trajectory of Unit 2 jumps to the point 0) in the

Fig. 4. The state(r) (or xo(r ) ) vibrates divergently (or Pphase plane at every switching. In this paper, we call this

convergently ) from an initial state. If the statereaches behavior periodicity-like trajectory. The periodicity-like

the thresholdx; = 1, Unit 1 outputs a spike(r) and the trajectory jumps to the pointg, 0) at every switching in

statex; is reset to the basg instantaneously. Then, Unit the phase plane but jump (reset) timing is chaotic.

2 accepts the spikeand the state; is reset to the basp: For simplicity, we fix the parametels = a, = 5.0,

it is a master-slave coupling. Master and slave systems age = 1, k, = —1 hereafter. In order to analyze the phe-

Unit 1 and Unit 2, respectively. The pulse-coupled PWCS@omena, we derive a two-dimensional return map. We

repeats this manner and can output the spike-trains. Figefine a domairDq to derive the 2-D return mapDq =

5 shows typical attractors. In Fig. 5 (a), Unit 1 exhibits{x;, y1, X2, ¥2 | X1 = Q1, X2 = 02} and let any point iDq be

chaotic attractor and spike-trains. Since chaotic switchingpresented by the statesyafandy,. Fig. 6 shows key

of Unit 1 occurs, the switching of Unit 2 is chaotic: Theobjects for the return map. Let us consider the case where

stable behavior (see Fig. 3 (b) ) is changed into chaotite switching generatesat= 0 and the trajectories of each

behavior (see Figs. 5 (b) and (f) ). unit jump to each basg andqp, respectively. We represent
However, the behavior of Unit 2 seems to be perioditheir states as the followingz (0) = y;, andy,(0) = y. As

trajectory in Fig. 5 (f). Although Unit 2 exhibits chaotic shown in Fig. 6, the trajectories of each unit evolve with
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We could say that the periodicity-like trajectory with period

v n exists in wider parameter ranges. It should be noted that
this behavior is also chaotic response because of chaotic
0 N —~ input of Unit 1.

T
l
| 4. Conclusions
I

,]'5 | ‘
0 0.133 0.2

0.4 0.6 We have studied the dynamics of the pulse-coupled
PWCSOs. In the master-slave coupling, the pulse-
coupled PWCSO exhibits various phenomena including the
"periodicity-like trajectory”. Using the 2-D return map, we

have studied occurrence mechanism of the periodicity-like
trajectory. Future problems include a more detailed anal-

time. When the trajectory of Unit 1 reaches the threshysis of the periodicity-like trajectory with periadand bi-

Figure 8: A bifurcation diagram of Unit 2 fdg = 1, k, =
-1,a = a =5.0andqg; = 0.2.

old at finite positive timer = 71, each trajectory jumps to furcation phenomena in wider parameter ranges.

each pointds,y,,,) and Qz.yy,,) : letyi(r1) = y,,, and
y2(r1) = yi,,. Since the trajectory starting frobg returns
to itself, the 2-D return map can be described as the fol-
lowing. (1]

F:Dq— D (oY) = (nex Vi)

wheren is a non-negative integer. Typical return maps are
shown in Fig. 7. Since the trajectory of Unit 1 is piece-
wise linear,y; and a switching interval can be calculated [3]
rigorously if an initial statey; is given [8]. Therefore, the
switching interval and the stayg are giveny; can be also
calculated rigorously. As shown in Fig. 7 (d), we can see
that a sequendg;;} is all zero after transient process when
Unit 2 exhibits the periodicity-like trajectory. That is, the
jumping point of the trajectory of Unit 2 in the phase plane
is (g2, 0) at every switching.

Fig. 8 shows a bifurcation diagram of Unit 2. When
approaches 0, Unit 2 tends to exhibit the periodicity-like [°]
trajectory. Based on elemental calculation, we obtain that
the periodicity-like trajectory occurs if Eq. (12) is satisfied.

(11) 2]

(4]

1-q (6]

1+a

gz < . (12)

We consider the case where a trajectory of Unit 2 starts
from a point €,0) att = 0 in the phase plane. From
Eq. (4),7. = (a2 + 1)q; is calculated for Unit 2. On the
other hands, a minimal switching interval of Unit 1 is a
case where a sequent switching generates as shown in Fi%]
6 (a): this switching interval is (+ g1). Consequently, if

(a2 + D)2 < 1 — q is satisfied, the trajectory starting from

(02, 0) can reach the origin at every switchirg. = 1;—‘;; ~

0.133 is calculated for the parameters of Fig. 8.

For g, = 0.3, the attractor of Unit 2 seems to be like pe-
riodic attractor with period 2 (see Fig. 5 (e) ). In this case,
Eqg. (12) is not satisfied and the trajectory does not jump to
(02, 0) at every switching. When the sequent switching of10]
Unit 1 generates, the trajectory of Unit 2 can not reach the
origin, however other cases generate reaching of the trajec-
tory. The 2-D return map is shown in Fig. 7 (c). That s, the
trajectory of Unit 2 jumps to two points in the phase plane.

(7]

9]
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