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Abstract—Recently several methods which utilise net-

work theory as a tool for nonlinear time series analysis have

been developed. Given data from a single measurement

process alone, network transformations of time series pro-

duce an associated network space. Studying its topology

and properties can provide insight regarding the underlying

dynamical system. We focus on the so-called ordinal par-

titions method, a technique where nodes encode for sym-

bolic orderings of discrete dynamical states and network

connectivity is defined by temporal succession. In con-

trast to alternative approaches which mainly concentrate

on topological aspects, dynamical information is directly

encoded into the resulting ordinal networks. By applying

this technique to data generated by numerical simulation

of well-studied systems, we explore how network proper-

ties reflect characteristics of the underlying dynamics gov-

erning the original time series. Additionally, we perform a

parameter investigation.

1. Introduction

Natural systems often exhibit very high complexity

which may be (partially) captured by high-dimensional

models. These models are formed by continuous refine-

ment, through the juxtaposition of observations and an as-

sociated theoretical framework. Observations are usually

drawn from a single measurement process which essen-

tially projects a high-dimensional dynamical state onto a

single number. Therefore, a data set - and in particular time

series, a type of data collected at successive points in time

- is a form of compressed information about a dynamical

system. Extracting and interpreting this information can

provide us with additional insight and enhance our knowl-

edge about the dynamical behaviour of the underlying sys-

tem.

The aim of time series analysis is to develop techniques

which can capture characteristics of the dynamics from the

data. Linear processes have traditionally been explored us-

ing methods from stochastic analysis, for instance autore-

gressive (AR) or moving average (MA) models. However,

nature is inherently nonlinear. Our research concentrates

on nonlinear time series analysis, which can be very ef-

fective when the dynamics are generated by a determin-

istic process [3]. Approaches such as phase-space recon-

struction through delay-coordinate embedding [4], dimen-

sion estimates, Lyapunov exponents, complexity measures,

information theory, surrogate data methods, noise filtering

and recurrence plots have proved very successful in uncov-

ering dynamical aspects about a system from raw data, es-

pecially if the state-space dimension is low.

A novel approach was first introduced by [5] who de-

veloped a transformation of time series to complex net-

works. Recognising the immense potential provided by the

abstraction of a network representation, the authors used it

as a means of encoding information rather than a structure

tied to a physical/virtual interpretation. Soon after vari-

ous other techniques followed [6, 7, 8]. Complex network

transforms often do not require a delay reconstruction and,

in addition, are often robust to measurement noise. This

idea became popular very rapidly and led to a surge in the

interest for complex networks among the dynamical the-

ory community. Recently, a transform which explicitly en-

codes dynamical information into a network was formu-

lated by [2], the ordinal partitions network transform. In

this paper, we explore some of the properties of this tech-

nique and show aspects of its applicability.

2. Methodology

2.1. The Ordinal Partitions Method

Let xt denote a scalar time series of N measurements.

We segment it into partitions (windows) of fixed size w,

which may be overlapping by a certain amount τ. In this

paper we focus on the sliding variant, i.e. successive par-

titions have a lag of one point (τ = w − 1). This almost

fully overlapping variant captures more dynamical infor-

mation in contrast to the non-overlapping variant which is

formed in a static manner. Denote each such partition by

yi = (xi, xi+1, ..., xi+w−1) for i = 1, ...,N − w + 1. The cor-

responding ordinal partition is defined by the permutation

o(i) = (π1, π2, ..., πw) where π j ∈ {1, 2, ...,w}, π j , πk if

j , k such that xi+ j−1 is the π j-th largest element of the

w-vector yi. In the event that two elements of yi are equal,

we arbitrarily pick the one that occurs first as the small-

est. In other words, each partition is mapped onto a sym-

bolic ordering of the natural numbers depending on the rel-

ative magnitude of the points {xi, xi+1, ..., xi+w−1}. For in-

stance, consider a partition of 6 time series points x1, x2,
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Figure 1: Ordinal networks for the Lorenz system for w = 8 (top left), 24 (top

right), 42 (bottom left) and 50 (bottom right). The red and green diamonds depict

the most highly and second most-highly connected nodes respectively.

x3, x4, x5, x6 which have relative magnitude of the form

x1 < x4 < x6 < x2 < x3 < x5. This partition is assigned

the ordering (6, 3, 2, 5, 1, 4) since x1 is the smallest member

of the group, x2 is the third largest, x3 is the second largest

etc.

We now proceed to the ordinal network formation. Each

distinct ordering o(i) is mapped to a node with connectivity

determined by temporal succession, i.e. only the nodes cor-

responding to neighbouring partitions in the time series are

connected. Thus, the size of the network will be at most w!

(in practice this number is significantly smaller due to im-

portant role forbidden patterns play in continuous dynam-

ical systems [9]. If we wish to incorporate additional dy-

namical information, we can further consider the directed

and weighted constructions where a transition from o(i) to

o( j) is manifested on the network by the inclusion of edge

(i, j) - but not ( j, i) - with a weight given by the relative

frequency of transition (i, j),

fi j =
#(o(i) → o( j))∑

i

∑
j

#(o(i) → o( j))
. (1)

Selecting a value for the main parameter w is of criti-

cal significance. As portrayed in Fig. 1, completely differ-

ent structures emerge for different partition sizes. Various

means for finding an optimal value for w may be explored,

most notably the graphical inflexion and maximum network

link entropy possibilities proposed in the original paper [2].

However, numerical evidence suggests that useful informa-

tion may be obtained by considering various partition sizes,

in a sense looking at the dynamics from a different perspec-

tive. In Section 3.4 we elaborate further using the results of

the parameter investigation.

2.2. Node Centrality Properties

The generated networks’ structure is explored using a

variety of measures, both local and global in nature. One

of the main tasks of network analysis is the identification

of node importance. The simplest such characterisation

is provided by the notion of the node degree, the number

of links adjacent to a node. Other common computational

measures to this end are given by the three most used cen-

trality definitions. Closeness centrality represents the ease

of reaching other nodes (relative ‘closeness’ or ‘farness’ of

a node) and is a natural distance metric between pairs of

nodes. It is defined as

CCi =
1∑

j

d(i, j)
, (2)

where d(i, j)) is the number of edges between nodes i and

j. Betweenness centrality, on the other hand, is more

representative of a node’s importance in information flow

through the network. It quantifies the number of times a

node acts as a bridge along the shortest path between two

other nodes and is defined by

BCi =
∑

i, j,k

σ jk(i)

σ jk

, (3)

where σ jk denotes the number of shortest paths between

nodes j and k and σ jk(i) is the number of those paths that

pass through i. Eigenvector centrality measures the influ-

ence of nodes in information flow by looking at its neigh-

bours, i.e. influence is estimated by the number of strong

‘friends’ you have in a social context. It is defined by look-

ing at the spectral properties of the adjacency matrix.

2.3. Network Entropy Measures

In addition to all of the above, which comprise standard

computational tools in complex network theory, we make

use of entropy measures applied to specific network prop-

erties. Entropy is a measure of the information content in a

signal and may be interpreted also as the uncertainty asso-

ciated with random behaviour (amount of unpredictability).

We apply this notion to the degree distribution of our net-

works to obtain a global measure, termed degree entropy,

and to the distribution of links of each node to obtain a lo-

cal measure, termed node-link entropy. In this case, define

p(i, j) as the probability of traversing to node j if we are

currently residing on node i. Then, the node-link entropy

of node i is given by

Hi = −
∑

j, ai j,0

p(i, j) · log[p(i, j)], p(i, j) =
ai j∑
j

ai j

, (4)

where the term ai j denotes the corresponding value in the

adjacency matrix (1 if unweighted). The median nodal en-

tropy of the entire network, a quantity known as network

link entropy, may also be computed.
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Figure 2: Time series of the x-component of the Lorenz system. Network prop-

erties (generated with w = 24) are mapped back onto the partitions by colouring the

first point. From top to bottom the node degree, closeness centrality, betweenness

centrality and eigenvector centrality are shown.

3. Results

3.1. Lorenz System

We compute sample time series from the x component of

the Lorenz system, developed in 1963 as a simplified model

for atmospheric convection [1]. It is one of the most famous

and well-studied systems exhibiting chaotic behaviour un-

der certain parameter regimes. It is given by the following

differential equations

dx

dt
= σ(y − x)

dy

dt
= x(ρ − z) − y

dz

dt
= xy − βz,

(5)

whereσ = 10, ρ = 28 and β = 8
3
. Using MATLAB routines

based on the fourth Runge-Kutta method, we integrated the

system numerically for t ∈ [0, 1000] with a sampling rate

equal to 0.01 (N = 100, 000 points, period of oscillations

approximately equal to 1 unit of time).

3.2. Ordinal Networks

The networks (unweighted, undirected variant) gener-

ated by applying the ordinal partitions method on the

Lorenz system are shown in Fig. 1 for four different values

of w. As is evident, the four networks have a significantly

different topology. The first thing to note is that the size of

four networks grows as the partition size is increased (see

Section 3.4). Additionally, the first two networks possess a

structure which clearly exhibits four legs, potentially a sign

of community structure. The number of ‘loops’ (loosely

defined as paths traversed from one neighbouring node to

the other through a number of other degree-2 nodes) also

increases with the partition size, as is the overall connec-

tivity of the network. Finally, note that for the Lorenz

networks in general, the most highly connected node (de-

picted in red diamonds) is usually found at the heart of

the network (and often coincides with the node with the

highest betweenness and closeness centrality) and serves

as the main connector for information flow. It corresponds

to the most frequent ordinal pattern occurring in the time

series. The second most highy connected nodes (depicted

in green) serve as the main structural components hold-

ing the ‘leg’ structures together. However, in the case of

w = 42 (bottom left graph) there are several highly con-

nected nodes and the number of ‘legs’ has multiplied sig-

nificantly. These observations indicate that depending on

the partition size, the generated ordinal network captures

different amounts of information about the dynamics of the

underlying system.

3.3. Mapping Network Properties onto the Time Series

We applied the local network measures defined above to

the generated networks (w = 24 shown here) and mapped

these nodal properties back onto the time series (Fig. 2)

and onto the phase-space attractor (Fig. 3) of the Lorenz

system. Since the parameter values we have chosen lead

to chaotic behaviour, this data set serves as a good exam-

ple for testing the amount of complexity captured by the

ordinal networks. Fig. 2 clearly shows that the middle re-

gion where trajectories transition from one regime to the

other (corresponding to the separatrix on the attractor) is

identified merely by looking at network properties. As ex-

pected, this region is crucial both in terms of the dynam-

ics (connects the two wings; high frequency of trajectories

etc.) and in terms of the networks for the transmission of

information. Betweenness centrality especially is a great

indicator which is sensible intuitively; the most influential

patterns in the time series determine the transitions between

the two different regimes. Another noteworthy observation

is that the stationary points are also clearly traced by the

node-wise properties with no exception, with betweenness

again being the most representative. Extrema points also

hold major importance for the dynamics of the system and

the network representation seems to capture this hierarchy

in a natural fashion: the separatrix region is mapped onto

nodes of very high betweenness (the most influential peo-

ple in a social context); stationary points are not as influen-

tial but still play a very central role in that they determine

when a trajectory will move into the separatrix region and

consequently jump to the other wing or continue the rota-

tion around the same unstable fixed point. Finally, other
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Figure 3: Closeness centrality mapped back onto the attractor for w = 24, 42, 50

ad 80 going from top to bottom row-wise.

regions have much less influence in the dynamics of the

system and this is reflected by the low centrality values

of those nodes. Fig. 3, which shows the Lorenz attractor

with closeness centrality mapped back onto it, depicts this

distinction accurately for ordinal networks generated with

w = 24. Therefore, local dynamical behaviour is certainly

incorporated into the complex network representations.

What about more global behaviour? Fig. 3 shows the

Lorenz attractor for four different ordinal networks (from

top and traversing rows, w = 24, 42, 50 and 80). Clearly,

node-wise closeness centrality differs significantly as ex-

pected. For each partition size, different aspects about the

underlying dynamics are uncovered by the network and,

hence, different importance is assigned to each node (and

by extrapolation each w-pattern). For the larger partition

sizes (w = 50, 80) we have a completely different picture

where local dynamical behaviour is not captured any more.

Rather, the attractor seems to be partitioned in different

bands with boundaries possibly defined by unstable peri-

odic orbits (UPOs) of low order (i.e. the most dominant,

least unstable ones). Therefore, as we increase the size of

partitions in which we segment our time series, the gen-

erated ordinal networks reflect more global, macroscopic

properties of the underlying dynamics.

3.4. Parameter Investigation

Here we present results regarding global network prop-

erties and how they vary with the partition size w. Fig. 4

shows plots of the number of nodes (V) and the network’s

link entropy (top and bottom respectively) as we vary w.

The graphical inflection in the w-V graph corresponds to

w = 42. For small partition sizes, w! is not very large and,

coupled to the fact that there are many forbidden patterns,

the generated networks are also small and carry no partic-

ular significance regarding the underlying dynamics. As

we increase w further, however, local dynamical behaviour

starts being incorporated into the network until we reach

the inflexion point, above which global dynamical proper-

ties start being encapsulated. Network link entropy shows

the amount of information carried by the average distribu-

Figure 4: Number of nodes in the network (top) and network link entropy (bot-

tom) as the partition size w is varied, w ∈ [4, 80].

tion of links and can also act as a strong indicator of the

usefulness of networks generated using a particular w. The

weighted variant will be more informative in this case as

information about transitions between patterns needs to be

incorporated.

4. Conclusions and Discussion

The ordinal partitions network transform suggests a new

approach to nonlinear time series analysis and constitutes a

field which is ripe for exploration. It incorporates dynam-

ical information explicitly into the network representation,

it does not require embedding of the data, is very easy to

implement and seems to reflect subtle properties about the

underlying dynamics.
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