
Condition Numbers of Two-Dimensional Orientation Problem

Katsuhisa Ozaki†,∗∗, Takeshi Ogita‡,∗∗ and Shin’ichi Oishi∗,∗∗

†Department of Mathematical Sciences, College of Systems Engineering and Science, Shibaura Institute of Technology
307 Fukasaku, Minumaku, Saitama-shi, Saitama 337-8570, Japan

‡Department of Mathematical Sciences, Tokyo Woman’s Christian University
2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan

* Faculty of Science and Engineering, Waseda University
3-4-1 Okubo, Shinjyuku-ku, Tokyo 169-8555, Japan
** CREST, Japan Science and Technology Agency

Email: ozaki@sic.shibaura-it.ac.jp

Abstract—There are robustness problems in the field of
computational geometry. A correct result is output by ra-
tional arithmetic. However, an inexact result is output due
to rounding errors by finite precision arithmetic. A condi-
tion number is frequently used for discussions of accuracy
of computed results in the area of numerical analysis. In
this paper, this concept is innovated to one of the basic ge-
ometric predicates ‘two-dimensional orientation problem’.

1. Introduction

This paper is concerned with basic computations in
computational geometry. We focus our mind on a two-
dimensional orientation problem which is frequently used
in applied geometric problems, for example, a convex hull
for a set of points, a point-in-polygon problem and so on.
Assume that an oriented line passes fromA = (ax,ay) to
B = (bx,by). Let C = (cx, cy) be a point. LetF be the set of
floating-point numbers defined by IEEE 754 [1]. Assume
thatA, B,C ∈ F2. The problem is to distinguish which the
point C is left to, right to, or on the oriented lineAB. The
problem can be solved by evaluating the following sign of
the determinant:

sign(det(G)), G :=

 ax ay 1
bx by 1
cx cy 1

 . (1)

If the sign of the determinant is positive, then the point is
left to the oriented line. If the sign of the determinant is
negative, then the point is right to the oriented line. Other-
wise, the point is on the oriented line.

If the sign of the determinant (1) is evaluated by pure
floating-point arithmetic, then an inexact result may be ob-
tained due to accumulation of rounding errors. When the
point is very close to the oriented line, heavy cancellation
occurs in the floating-point computations of (1), so that fi-
nally an incorrect result may be obtained. It yields seri-
ous problems. See [2] for detailed examples (these prob-
lems are called robustness problems). To overcome this
problem, using multiple precision arithmetic is an option.

However, to apply it straightforwardly makes the computa-
tional performance slow down due to software simulation.
Therefore, adaptive approaches, for example [3, 4, 5], have
been investigated. Initially, a so-called floating-point filter
is applied. The filter quickly checks a sufficient condition
for correctness of the sign of the determinant. If the fil-
ter cannot guarantee correctness of the sign of the deter-
minant, then computational precision is increased and we
check the correctness again. These procedures are repeated
until the correctness of the result can be guaranteed. There-
fore, computing time of the adaptive algorithm is related to
difficulty of the problem.

Various sets of three pointsA, B andC are necessary
so as to the compare performance of adaptive algorithms.
We innovate condition numbers to the two-dimensional ori-
entation problem. The condition numbers are frequently
used for discussion of the accuracy of the numerical result.
There are several ways to compute det(G) in (1), for exam-
ple,

F1 = (ax − cx)(by − cy) − (ay − cy)(bx − cx), (2)

F2 = ax(by − cy) + bx(cy − ay) + cx(ay − by), (3)

F3 = axby − axcy − cxby − aybx + aycx + cybx. (4)

We define condition numbers for each expression. Let them
becond(F1), cond(F2), cond(F3). We give an algorithm
which randomly outputs a set of three points. The resul-
tant set gives almost same condition numbers forcond(F1),
cond(F2), cond(F3).

2. Condition Numbers for Orientation Problem

In this section, we innovate condition numbers to the
two-dimensional orientation problem.fl(· · ·) means that
an expression in parentheses is evaluated by pure floating-
point arithmetic. First, we definecond(F1). For a,b ∈ F,
there is an algorithm which transformsa+ b into x+ y(x =
fl(a + b)) without rounding errors when overflow does not
occur infl(a+ b). Denote this algorithm as

[x, y] = TwoSum(a,b).

2010 International Symposium on Nonlinear Theory and its Applications
NOLTA2010, Krakow, Poland, September 5-8, 2010

- 144 -

See [8] for the detail of this algorithm. There is an algo-
rithm which transformsa× b into x+ y(x = fl(a× b)) with-
out rounding errors when neither overflow nor underflow
occurs in the computation of the algorithm. Let this algo-
rithm denote

[x, y] = TwoProduct(a,b).

See [7] for the detail of this algorithm. ApplyingTwoSum
to each subtraction in (2) as follows:

[t1,e1] = TwoSum(ax,−cx),
[t2,e2] = TwoSum(by,−cy),
[t3,e3] = TwoSum(ay,−cy),
[t4,e4] = TwoSum(bx,−cx),

(5)

(2) can be transformed into

det(G) = (t1 + e1)(t2 + e2) − (t3 + e3)(t4 + e4). (6)

Expanding (6) straightforwardly yields

t1t2 + t1e2 + t2e1 + e1e2 − t3t4 − t3e4 − t4e3 − e3e4. (7)

Applying TwoProduct for each product in (7) as follows:

[p1, p2] = TwoProduct(t1, t2),
[p3, p4] = TwoProduct(−t3, t4),
[p5, p6] = TwoProduct(t1,e2),
[p7, p8] = TwoProduct(t2,e1),

[p9, p10] = TwoProduct(−t3, e4),
[p11, p12] = TwoProduct(−t4, e3),
[p13, p14] = TwoProduct(e1,e2),
[p15, p16] = TwoProduct(−e3,e4),

we finally obtain

det(G) =
16∑
i=1

pi .

This way is used in robust algorithms [4, 5]. We now intro-
duce the condition number of summation of floating-point
numbers. Letv ∈ Fn, the condition number of summation
is introduced in [6] as follows:

cond(
n∑

i=1

vi) =

∑n
i=1 |vi |
|∑n

i=1 vi |
.

Therefore, it is natural that the condition number for (2) is
defined as

cond(F1) =

∑16
i=1 |pi |
|∑16

i=1 pi |
.

Next, we definecond(F2). Applying TwoSum for the
each subtraction in (3), we obtain

[t5,e5] = TwoSum(by,−cy),
[t6,e6] = TwoSum(cy,−ay),
[t7,e7] = TwoSum(ay,−by).

(8)

After that, we have

ax(t5 + e5) + bx(t6 + e6) + cx(t7 + e7)

= axt5 + axe5 + bxt6 + bxe6 + cxt7 + cxe7

TwoProduct can be applied for each product in the above-
mentioned expression as follows:

[q1, q2] = TwoProduct(ax, t5),
[q3, q4] = TwoProduct(ax,e5),
[q5, q6] = TwoProduct(bx, t6),
[q7, q8] = TwoProduct(bx,e6),

[q9,q10] = TwoProduct(cx, t7),
[q11,q12] = TwoProduct(cx,e7).

Then, we have

det(G) =
12∑
i=1

qi .

Therefore, the condition number for (3) is defined by

cond(F2) =

∑12
i=1 |qi |
|∑12

i=1 qi |
.

From similar discussion,cond(F3) can be defined. Apply-
ing TwoProduct for each product in (4) as follows:

[r1, r2] = TwoProduct(ax, by),
[r3, r4] = TwoProduct(ay, cx),
[r5, r6] = TwoProduct(bx, xy),
[r7, r8] = TwoProduct(ax,−cy),

[r9, r10] = TwoProduct(ay, bx),
[r11, r12] = TwoProduct(by, cx),

the condition number for (4) is defined by

cond(F3) =

∑12
i=1 |r i |
|∑12

i=1 r i |
.

This form is used in Shewchuk’s algorithm ‘Ori-
ent2dExact’.

Remark 1 There is a set of three points which yields big
difference of the condition numbers. For example, let three
points be

A = (2,1), B = (−1,−1), C = (2100,2100). (9)

Then,cond(F1) = 2.53e+ 30, cond(F2) = 5, cond(F3) =
5. If one library uses the form (2) and the other library uses
the form (3), comparing the performance of two libraries
by (9) yields an unfair result.

It is possible to give different orders of the expression
(2), for example,

F′1 = (cx − bx)(ay − by) − (cy − by)(ax − bx), (10)

F1” = (bx − ax)(cy − ay) − (by − ay)(cx − ax). (11)

Condition numbers for F′1 and F1” can be defined from
similar discussion. Let them becond(F′1) andcond(F”1),

- 145 -

respectively. There is a case that the condition numbers
are much different. For example, recalling (9), the condi-
tion numbers arecond(F1) = 2.53e+ 30, cond(F′1) = 5,
cond(F”1) = 5.

We can derive the following approximation of the condi-
tion numbers

cond(F1) ≈
|(ax − cx)(by − cy)| + |(bx − cx)(ay − cy)|
|(ax − cx)(by − cy) + (bx − cx)(ay − cy)|

,

cond(F2) ≈
|ax(by − cy)| + |bx(ay − cy)| + |cx(ay − by)|
|ax(by − cy) + bx(ay − cy) + cx(ay − by)|

,

cond(F3) ≈
|axby| + |axcy| + |cxby| + |aybx| + |aycx| + |cybx|
|axby − axcy − cxby + aybx + aycx − cybx|

.

3. How to Generate Set

Let X be a required condition number. We propose an
algorithm which randomly outputs a set of three points.
Moreover, the set gives almost same condition numbers:
cond(F1), cond(F2) andcond(F3). Our algorithm consists
on the following three parts.

3.1. Condition Number up to 1e+16

If a required condition number is less than 1016, an algo-
rithm developed in this subsection is used. First, we gener-
ateax,ay,bx,by, cx at random1. Let S be

S = fl(|axby| + |aycx| + |aybx| + |bycx|).

A vectorw is generated as follows:

[w1,w2] = TwoProduct(ax,by),
[w3,w4] = TwoProduct(bx,−ay),
[w5,w6] = TwoProduct(cx,ay),
[w7,w8] = TwoProduct(by,−cx).

Here, we introduce the accurate summation algorithm by
Rump, Ogita and Oishi [11]. It is guaranteed that accuracy
of the result by their algorithm is within 1 ulp (it is called
faithful rounding). This function denotesAccSum(p) for
a vectorp ∈ Fn in INTLAB [9]. Let d be a sum of all
elements inw. After that,cy is obtained as follows:

d = AccSum(w), cy = fl

(
S/X − d
bx − ax

)
.

3.2. Condition Number up to 1e+32

We generateax,ay,bx,by at random. LetS be

S = fl(|axby| + |aybx|).

The following vectorw is generated as follows:

[w1,w2] = TwoProduct(ax,by),
[w3,w4] = TwoProduct(bx,−ay).

1If cx ≈ ax or cx ≈ bx, then we regeneratecx. Same discussion is held
for cy.

Let d be a sum of all elements inw. Thencx is obtained by

d = AccSum(w), cx = fl

(
S/X − d
ay − by

)
.

Next, we add four elements to the vectorw as follows:

[w5,w6] = TwoProduct(cx,−by),
[w7,w8] = TwoProduct(cx,ay).

After that,d is updated andcy is obtained as follows:

d = AccSum(w), cy = fl

(
S/X − d
bx − ax

)
.

3.3. Condition Number over 1e+32

If ax, ay, bx and by are given at random, then it is al-
most impossible to get a set of points which gives condi-
tion numbers up to 1032. First, we apply an ill-conditional
matrix generator by Rump [10].

A = randmat(2,X/1e+ 32);

This function is supported by INTLAB [9]. Then, letax,
ay, bx andby be

A =

(
ax ay

bx by

)
.

Next, we generate a vectorw as

[w1,w2] = TwoProduct(ax,by),
[w3,w4] = TwoProduct(bx,−ay).

Let d andcx be defined as follows:

d = AccSum(w), cx = fl

(
−d

ay − by

)
We extend a vector by adding four terms as follows:

[w5,w6] = TwoProduct(cx,−by),
[w7,w8] = TwoProduct(cx,ay).

Then,d is updated andcy are computed by

d = AccSum(w), cy = fl

(
−d

bx − ax

)
.

This algorithm is able to output a set of three points which
gives the condition numbers up tocnd= 1064.

4. Numerical Examples

We show numerical examples by our algorithm. We
used MATLAB’s built-in functionrandn for generating
points [12]. In Table 1, the item ‘cnd’ shows a required
condition number. The items ‘cond(F1)’, ‘ cond(F2)’ and
‘cond(F3)’ show the condition numbers defined in Section
2. The results are averages of 100 examples. It is confirmed
from Table 1 that our algorithm can output a set of points

- 146 -

Table 1: Comparison of the condition numbers.

cnd cond(F1) cond(F2) cond(F3)

105 2.39e+05 1.62e+05 2.47e+05
1010 3.07e+10 2.22e+10 2.93e+10
1015 2.47e+15 1.68e+15 2.49e+15
1020 1.75e+20 1.76e+20 3.05e+20
1025 1.71e+25 1.78e+25 2.91e+25
1030 1.51e+30 1.76e+30 2.78e+30
1035 8.82e+36 8.73e+36 8.82e+36
1040 4.99e+40 4.99e+40 4.99e+40
1045 1.35e+46 1.35e+46 1.35e+46
1050 3.51e+50 3.51e+50 3.51e+50

Table 2: Difference of condition numbers.

cnd max mean min

105 11.5 3.03 1.01
1010 24.5 3.01 1.04
1015 9.68 2.70 1.00
1020 30.0 3.91 1.03
1025 75.4 5.29 1.00
1030 43.7 9.63 1.00
1035 1.91 1.05 1.00
1040 1.00 1.00 1.00
1045 1.00 1.00 1.00
1050 1.00 1.00 1.00

with almost required condition number for eachcond(F1),
cond(F2) and cond(F3). Next, we check the difference
amongcond(F1), cond(F2) andcond(F3). Table 2 shows
the maximum, mean and minimum of

max(cond(F1), cond(F2), cond(F3))
min(cond(F1), cond(F2), cond(F3))

for 100 examples. From Table 2, the difference among con-
dition numbers ofF1, F2 andF3 is not a lot.

Next, we checked difference ofcond(F1), cond(F′1) and
cond(F”1). Table 2 shows the maximum, mean and mini-
mum of

max
(
cond(F1), cond(F′1), cond(F1”)

)
min

(
cond(F1), cond(F′1), cond(F1”)

)
for 100 examples. It is confirmed from Table 3 that there
is not so much difference among condition numbers except
cnd = 1050. Whencnd = 1050, we found thatbx andby

are relatively large. Thencond(F′1) is approximately|bxby|.
There is nobxby in F1 and F1”. Therefore, it yields big
difference.

Table 3: Difference of condition numbers.

cnd max mean min

105 7.83 3.15 2.03
1010 9.09 3.23 2.01
1015 11.5 3.32 2.00
1020 12.0 3.57 2.01
1025 23.1 3.39 2.01
1030 17.8 3.30 2.00
1035 3.74 2.32 2.00
1040 3.82 2.39 2.00
1045 3.48 2.42 2.00
1050 161 112 77.0

References

[1] IEEE Standard for Floating-Point Arithmetic, Std
754–2008, 2008.

[2] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, C. Yap:
Classroom Examples of Robustness Problems in Ge-
ometric Computations, Computational Geometry 40,
1 (2008), 61-78.

[3] G. Melquiond and S. Pion, Formally certified
floating-point filters for homogenous geometric pred-
icates, Theoretical Informatics and Applications, Spe-
cial issue on Real Numbers, vol. 41 (2007), 57-69.

[4] J. R. Shewchuk: Adaptive precision floating-point
arithmetic and fast robust geometric predicates, Dis-
crete & Computational Geometry, 18 (1997), 305–
363.

[5] K. Ozaki, T. Ogita, S. M. Rump, S. Oishi: Adaptive
and Efficient Algorithm for 2D Orientation Problem,
accepted for Japan Journal of Industrial and Applied
Mathematics (JJIAM), 26 (2009), 215-231.

[6] T. Ogita, S.M. Rump, S. Oishi, Accurate sum and dot
product, SIAM J. Sci. Comput., 26(6): 1955-1988,
2005.

[7] T.J. Dekker, A floating-point technique for extending
the available precision, Numer. Math., 18: 224–242,
1971.

[8] D.E. Knuth, The Art of Computer Programming:
Seminumerical Algorithms, volume 2, Addison-
Wesley, Reading, Massachusetts, 1969.

[9] S.M. Rump: INTLAB - INTerval LABoratory. In Ti-
bor Csendes, editor, Developments in Reliable Com-
puting, Kluwer Academic Publishers, Dordrecht,
1999, 77-104.

- 147 -

[10] S.M. Rump: A Class of Arbitrarily Ill-conditioned
Floating-Point Matrices, SIAM Journal on Matrix
Analysis and Applications, 12(4), 1991, 645-653.

[11] S.M. Rump, T. Ogita, and S. Oishi: Accurate floating-
point summation part I: Faithful rounding. SIAM J.
Sci. Comput., 31(1), 2008, 189-224.

[12] MATLAB User’s Guide, Version 7. The MathWorks
Inc., 2004.

- 148 -

	Navigation page
	Session at a glance
	Technical program

