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Abstract—In this paper, an algorithm of matrix factor-
ization based on Cholesky factorization for extremely ill-
conditioned matrices is proposed. The Cholesky factoriza-
tion is widely used for solving a system of linear equations
whose coefficient matrix is symmetric and positive defi-
nite. However, it sometimes breaks down by the presence
of an imaginary root due to the accumulation of rounding
errors. To overcome this, a robust algorithm named inverse
Cholesky factorization is investigated, which never breaks
down as long as the matrix is symmetric and positive defi-
nite. Numerical results are also presented.

1. Introduction

Matrix factorizations such as LU, QR and Cholesky fac-
torizations are frequently discussed in numerical linear al-
gebra since they are used as building blocks of scientific
computing. Following the previous paper [6] by the first
author, we propose an algorithm for accurately computing
an inverse Cholesky factorization of a real symmetric and
positive definite n X n matrix A, especially for A being ex-
tremely ill-conditioned, i.e. the condition number of A is
beyond the reciprocal of working precision.

Let u denote the unit roundoff of floating-point arith-
metic, which is equal to the working precision in use.
In IEEE standard 754 double precision, u = 273, Let
k(A) := ||All - |JA7Y]| as the condition number of A, where
|| - || stands for Euclidean norm throughout the paper. We
consider to treat the case where

k(A)>u".
This means no correct digit can be expected in an approx-
imate solution X when solving a linear system Ax = b in
working precision u.

In our previous work [6], we have presented algorithms
for accurately calculating inverse LU and inverse QR fac-
torizations. In those algorithms we rely on the fact that
standard numerical algorithms for LU and QR using pure
floating-point arithmetic rarely break down due to the
rounding error, which works as some kind of the regular-
ization. However, when a standard Cholesky factorization
such as A = RTR for an ill-conditioned matrix A is ex-
ecuted, it sometimes breaks down by the presence of an

imaginary root due to the accumulation of rounding errors,
even if A is actually positive definite. Namely, we can-
not directly apply our proposed framework in [6] to the
Cholesky factorization.

In this paper, we suggest to compute a good approximate
inverse X of the Cholesky factor R satisfying

A~ xxT,

The proposed algorithm is completely stable in the sense
of numerical computations, i.e., barring the presence of un-
derflow or overflow, it never fails as long as the matrix is
symmetric and positive definite. In other words, if the al-
gorithm breaks down, then the matrix is proved to be not
positive definite.

With the same spirit as the previous work [6] and Rump’s
method for inverting extremely ill-conditioned matrices
[9, 12], we emphasize that pure floating-point arithmetic
and standard numerical algorithms are utilized as much as
possible. The only one exception is that we need an al-
gorithm of accurately computing dot products, more pre-
cisely, as if computed in k-fold working precision and
rounded into ¢ pieces of working precision floating-point
numbers for any k > 2 and 1 < £ < k. For example,
such accurate dot product algorithms have been developed
in [7, 12, 14, 15] for the purpose, and they are very fast.

The rest of the paper is organized as follows: In the fol-
lowing section, we state notation and definitions used in
this paper. In Section 3, we present a concrete algorithm of
an accurate inverse Cholesky factorization. Finally, some
numerical results are presented for illustrating the perfor-
mance of our proposed algorithm in Section 4.

2. Notation and definitions

For real matrices A = (a;;), B = (b;;) € R™", we denote
by |A| = (la;jl) € R™" a nonnegative matrix consisting
of entrywise absolute values, and an inequality A < B is
understood entrywise, i.e., a;; < b;; for all (i, j). Moreover,
the notation A > O (or A > O) means that all elements of A
are nonnegative (positive). Similar notation applies to real
vectors.

For constructing a completely stable algorithm of an in-
verse Cholesky factorization, a little knowledge of interval
arithmetic is required.
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Let {a, r) denote an interval of the midpoint-radius rep-
resentation such that

{a,ry:={xeR:|x—a|l <1}

for some a € R, 0 < r € R. Let (b, s) denote an inter-
val in a similar way. Then the basic operations (addition,
subtraction and multiplication) are defined as follows (See,
e.g. [4, 1, 5] for details):

{a,ry+<{b,s) = {a+b,r+s)
(a,ry—<(b,s)y := {a—b,r+s)
{a,r)-{(b,s) := {ab,la|s+ rlb| + rs)

Note that the above operations for interval numbers with
the midpoint-radius representation can efficiently be ex-
tended to those for interval matrices [11] due to the second
author of this paper.
For later use, we define the magnitude of an interval ma-
trix (X, Y) by
mag(X,Y) :=|X|+ Y.

For readability we denote by ¢(y) a constant such as

©(y) = c-y where c is a constant of O(1) with 0 < ¢ < ul.

3. Accurate inverse Cholesky factorization

In this section, we present an algorithm of computing an
accurate inverse Cholesky factorization.

3.1. Accurate dot product

Let F be a set of floating-point numbers in working pre-
cision, e.g. double precision. Let x,y € F". We assume that
an accurate computation of a dot product x”y is available
as the tool of obtaining s, := 3'°_, s with s© € F such that

xy—s

xTy

< o) + p)cond(xTy), k>2, 1 <t <k

for x”y # 0. Here cond(x”y) is the condition number of dot
product [7] defined by

T
|x" [yl T
IxTyl

cond(x’y) :=2 y#0.

This means we can calculate x”y as if computed in k-fold
working precision and rounded into ¢ pieces of working
precision floating-point numbers s;, 1 < i < ¢. Fortunately,
we already have such accurate dot product algorithms pro-
posed in [7, 12, 14, 15] at hand. In this paper, the cases of
{=1,¢=T[k/2] and ¢ = k appear.

Throughout the paper, we use the notation

Cr=1{A-B)
which satisfies
IAB — C¢| < p(u)IAB| + p(u")|A||B| (1

for A € R™? and B € R,
abbreviate it as C = {A - B}y.

In the case of £ = 1, we

3.2. Algorithm

‘We have discussed about the accuracy of LU and QR fac-
torizations in [6], respectively. Similarly, we should con-
sider how to define that of a Cholesky factorization.

Let A = AT € F™" with a; > 0 for 1 < i < n. Suppose
a standard numerical Cholesky factorization of A runs to
completion. Here “run to completion” means that no imag-
inary root appears in the factorization process. Throughout
the paper, the Matlab-style notation

R = chol(A)

means a floating-point Cholesky factorization of A such
that
A~R'R,

where R is an upper triangular matrix. Then it is known [3]
that the computed Cholesky factor R always satisfies

A - R"R]|
- <

S

Thus it is similar to the case of the LU factorization that
not so much information on the accuracy of the Cholesky
factorization can be obtained from the residual norm ||A —
RTR||. Thus we again need an another criterion.

Suppose the exact Cholesky factorization A =
to completion. Then it holds that

k(R) = \k(A).

On the other hand, by some kind of ‘regularization’ due to
the rounding errors in floating-point arithmetic, heuristics
tells us that a computed factor R satisfies

’R?T’R?I'UIIS

K(R) ~ \/min{x(A),u"'}

for any (positive definite) matrix A as long as the (numeri-
cal) Cholesky factorization of A runs to completion. Let x
be an approximate solution of a linear system Ax = b. If

K(R) ~ Vk(A) < /& - u~l, then it holds that

IA~"b |
A1)

S Etol-

However, as mentioned before, the Cholesky factoriza-
tion of A using floating-point arithmetic sometimes breaks
down due to an accumulation of the rounding errors. To
avoid the break-down, a diagonal shift applies to A such as
A + 61 € F™ for some 6 > 0. Let A and Ay, be the
largest and the smallest eigenvalues of A, respectively. In
the case of 0 < Apin < 6 = @Ayax, it holds that

/lmax +0 - /lmax —1

A+ 6D = ~ =al 2
K(A +6I) FR 5 a 2

On the other hand, in case of § << Ay;n, it holds that

min

k(A +61) ~ % = k(A). 3)
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Let R be a computed Cholesky factor of A + 61, i.e.,
R = chol(A + o).

Combining (2) and (3) yields

k(R) ~ ymin{x(A), a~'}. )

The problem is how to choose a suitable constant @. In
the accurate inverse LU factorization in [6], it holds that

KAU™") ~ u - x(A),

where U is an upper triangular matrix obtained by an LU
factorization of A. Similarly, the constant @ in (4) becomes
a drop factor for the condition number of A such that

K(E_TAﬁ_l) ~ a- k(A).

So, it is desirable to choose a as small as possible.

By the backward error analysis of the floating-point
Cholesky factorization [16, 2], we have

A+A=RTR, |Al <nuRT|R| ~ nulA|.
In [13], Rump has modified and utilized it for verification
of positive definiteness:
A+A=RTR, Al <yu-tr(A),

where y is some computable constant and y =~ nu (see
[13]). Let ¢ be defined by

§:=min{t |A + 7] € F™", 7 > yu - tr(A)}.

As long as A is positive definite, chol(A + 61) never breaks
down and

(A+sD+A=R'R, |Al<6.
In other words, if chol(A + 1) fails, then A is proved to be
indefinite.

The idea of our algorithms is as follows: First, we com-
pute an approximate Cholesky factor R; of A such that
A+61 = R1TR1 in working precision. Next, we compute
an approximate inverse of X =~ Rl‘1 in working precision.
Then X7 AX; is computed in doubled working precision
with its error bound and rounded into an interval matrix
(G, E»). Tteratively we compute an approximate Cholesky
factor R, of G, + 9,1 in working precision, and then com-
pute an approximate inverse of 7, ~ R; !in working pre-
cision. After that, X; - T, is computed in doubled working
precision and stored into a matrix X, in working precision,
ie. {X; - To} = X, € F™". Moreover, X1 AX, is com-
puted in tripled working precision with its error bound and
rounded into an interval matrix (Gs, E3), and so forth. In
general, we aim to develop an algorithm satisfying

K(XEAXm) = max{p(a™)k(A), 1}.

By Sylvester’s law of inertia, if A is positive definite,
then X[_IAXk_l are also positive definite for any k. How-
ever, G; may be indefinite for some k due to the round-
ing errors. Taking the cases of treating interval matrices
(G, Ey) into account, we need to modify the diagonal shift
0.

By Weyl’s theorem, it holds that

(X AXic1) = (Gl < IEx|

since X] | AXi_1 € (G, Er). To ensure the positive defi-
niteness of Gy + d;I with taking care of the rounding errors,
we set oy as

O = yu - tr(Gy) + [|Exll.

Our algorithm of an accurate inverse Cholesky factor-
ization with partial pivoting is based on the following iter-
ative refinement of an approximate inverse X of the exact
Cholesky factor Rof A by the multiplicative corrections:

Algorithm 3.1 (Robust inverse Cholesky factorization)

For a symmetric matrix A € F™" with diag(A) > 0 and
a specified tolerance & < 1, the following algorithm
calculates an upper triangular matrix X = Y, X0,
XD e B such that | XTAX — I|| < &1 if such X exists.

Put Xg=Tandk = 1. (€:=Tk/2])

(B, Eg) —{A - X, )i+

(Cr, Ec) «{X] | - Bi}er1 +(O,1X] ||Ep).

(Gro Exy < 5(Cr Ec) + (C]EL))

If lmag{Gy — I, Ep)|| < &1, then X := X; and stop.
Compute 6 = yu - tr(Gy) + ||Ex]|.

Compute Sy = l(Gy + 0¢l) s.t. Sg > Gy + 6l
Check diag(Sy) > 0. If not, then stop.

Cholesky factorization: Sy ~ R Ry.

10:  If Step 9 failed, then stop.

11: Ty ~R

12: Xk — {Xk_1 . Tk}§+1.
13:  Update k — k + 1 and return to 2.

0N R

Note that high precision computations (of dot product) are
necessary only in Steps 2, 3 and 12. Among them, the re-
sults of the high precision computations are stored in high
precision in Steps 2 and 12. If the algorithm stops at Step
8 or 10, then A is proved to be indefinite. This is a mathe-
matical statement. Step 4 ensures that Gy is symmetric.

Remark 3.2 To avoid bad scaling, we can apply diagonal
scaling to the input matrix A with suitable powers of 2. See
[13] for details.

Remark 3.3 If Algorithm 3.1 runs to completion, the pos-
itive definiteness of A is also ensured.

4. Numerical results

We present some numerical results showing the behav-
ior of our proposed algorithm (Algorithm 3.1) of an inverse
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Table 1: Results for a scaled Hilbert matrix with n = 21
and k(A) ~ 8.16 - 10% by the proposed algorithm

k «k(XTAX)  (yw'k(A)  k(Xp) (yu)~?

0 8.16-10° 8.16-10% 1 1

1 2.84-10" 996-10"" 1.70-107 9.05-10°
2 1.08-10> 122-10* 8.71-10"% 8.19-10"
3 1.00 <1 9.03-10* > Vk(A)

Table 2: Results for a Rump matrix with n = 500 and
k(A) =~ 4.76 - 103 by the proposed algorithm

ko «XTAX)  wfkd)  «(Xp) (yu)~*
0 476-10% 476-10% 1 1

1 597-10* 594.10* 892-10° 895-10°
2 141-10% 7.42-10® 1.83-10'" 8.01-10"
3 3.69-102° 926-10"7 3.59-10'° 7.17-107
4 1.00-10'° 1.16-10° 6.89-10*" 6.41-10%
5 1.28 <1 6.10-10%° > k(A
6 1.00 <1 6.90-10% > Vk(A)

Cholesky factorization. All computations are done on Mat-
lab 2009a with IEEE 754 double precision arithmetic as
working precision (u = 27 ~ 1.1 - 107!%). As a stopping
criterion for Algorithm 3.1, we set g = 107°.

First, a scaled Hilbert matrix H, is treated. Here H,
is an integer (symmetric positive definite) matrix whose
elements are exactly representable in double precision
floating-point numbers for n < 21. For n = 21, k(Hy;) =
8.16 - 10%. We put A := H,;. The result is displayed in
Table 1.

Next, a slightly modified version of Rump matrix [8] is
treated, which is based on randmat (n,cnd) in INTLAB
[10] and symmetric positive definite. We set n = 500 and
cnd = 10%°. Then A € F90500 with x(A) ~ 4.76 - 107 is
generated. The result is displayed in Table 2.

In both test cases, the condition number of the input ma-
trices (H,; and A) is dropped by a factor around yu in each
step until k(X AX;) ~ 1. It turns out that we obtain an
adaptive and robust algorithm of an inverse Cholesky fac-
torization and verification of positive definiteness.
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