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Abstract—In this paper, an algorithm of matrix factor-
ization based on Cholesky factorization for extremely ill-
conditioned matrices is proposed. The Cholesky factoriza-
tion is widely used for solving a system of linear equations
whose coefficient matrix is symmetric and positive defi-
nite. However, it sometimes breaks down by the presence
of an imaginary root due to the accumulation of rounding
errors. To overcome this, a robust algorithm named inverse
Cholesky factorization is investigated, which never breaks
down as long as the matrix is symmetric and positive defi-
nite. Numerical results are also presented.

1. Introduction

Matrix factorizations such as LU, QR and Cholesky fac-
torizations are frequently discussed in numerical linear al-
gebra since they are used as building blocks of scientific
computing. Following the previous paper [6] by the first
author, we propose an algorithm for accurately computing
an inverse Cholesky factorization of a real symmetric and
positive definite n × n matrix A, especially for A being ex-
tremely ill-conditioned, i.e. the condition number of A is
beyond the reciprocal of working precision.

Let u denote the unit roundoff of floating-point arith-
metic, which is equal to the working precision in use.
In IEEE standard 754 double precision, u = 2−53. Let
κ(A) := ∥A∥ · ∥A−1∥ as the condition number of A, where
∥ · ∥ stands for Euclidean norm throughout the paper. We
consider to treat the case where

κ(A) ≫ u−1.

This means no correct digit can be expected in an approx-
imate solution x̃ when solving a linear system Ax = b in
working precision u.

In our previous work [6], we have presented algorithms
for accurately calculating inverse LU and inverse QR fac-
torizations. In those algorithms we rely on the fact that
standard numerical algorithms for LU and QR using pure
floating-point arithmetic rarely break down due to the
rounding error, which works as some kind of the regular-
ization. However, when a standard Cholesky factorization
such as A = R̂T R̂ for an ill-conditioned matrix A is ex-
ecuted, it sometimes breaks down by the presence of an

imaginary root due to the accumulation of rounding errors,
even if A is actually positive definite. Namely, we can-
not directly apply our proposed framework in [6] to the
Cholesky factorization.

In this paper, we suggest to compute a good approximate
inverse X of the Cholesky factor R̂−1 satisfying

A−1 ≈ XXT .

The proposed algorithm is completely stable in the sense
of numerical computations, i.e., barring the presence of un-
derflow or overflow, it never fails as long as the matrix is
symmetric and positive definite. In other words, if the al-
gorithm breaks down, then the matrix is proved to be not
positive definite.

With the same spirit as the previous work [6] and Rump’s
method for inverting extremely ill-conditioned matrices
[9, 12], we emphasize that pure floating-point arithmetic
and standard numerical algorithms are utilized as much as
possible. The only one exception is that we need an al-
gorithm of accurately computing dot products, more pre-
cisely, as if computed in k-fold working precision and
rounded into ℓ pieces of working precision floating-point
numbers for any k ≥ 2 and 1 ≤ ℓ ≤ k. For example,
such accurate dot product algorithms have been developed
in [7, 12, 14, 15] for the purpose, and they are very fast.

The rest of the paper is organized as follows: In the fol-
lowing section, we state notation and definitions used in
this paper. In Section 3, we present a concrete algorithm of
an accurate inverse Cholesky factorization. Finally, some
numerical results are presented for illustrating the perfor-
mance of our proposed algorithm in Section 4.

2. Notation and definitions

For real matrices A = (ai j), B = (bi j) ∈ Rm×n, we denote
by |A| = (|ai j|) ∈ Rm×n a nonnegative matrix consisting
of entrywise absolute values, and an inequality A ≤ B is
understood entrywise, i.e., ai j ≤ bi j for all (i, j). Moreover,
the notation A ≥ O (or A > O) means that all elements of A
are nonnegative (positive). Similar notation applies to real
vectors.

For constructing a completely stable algorithm of an in-
verse Cholesky factorization, a little knowledge of interval
arithmetic is required.
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Let 〈a, r〉 denote an interval of the midpoint-radius rep-
resentation such that

〈a, r〉 := {x ∈ R : |x − a| ≤ r}

for some a ∈ R, 0 ≤ r ∈ R. Let 〈b, s〉 denote an inter-
val in a similar way. Then the basic operations (addition,
subtraction and multiplication) are defined as follows (See,
e.g. [4, 1, 5] for details):

〈a, r〉 + 〈b, s〉 := 〈a + b, r + s〉
〈a, r〉 − 〈b, s〉 := 〈a − b, r + s〉
〈a, r〉 · 〈b, s〉 := 〈ab, |a|s + r|b| + rs〉

Note that the above operations for interval numbers with
the midpoint-radius representation can efficiently be ex-
tended to those for interval matrices [11] due to the second
author of this paper.

For later use, we define the magnitude of an interval ma-
trix 〈X, Y〉 by

mag〈X,Y〉 := |X| + Y.

For readability we denote by ϕ(γ) a constant such as
ϕ(γ) = c ·γ where c is a constant of O(1) with 0 < c ≪ u−1.

3. Accurate inverse Cholesky factorization

In this section, we present an algorithm of computing an
accurate inverse Cholesky factorization.

3.1. Accurate dot product

Let F be a set of floating-point numbers in working pre-
cision, e.g. double precision. Let x, y ∈ Fn. We assume that
an accurate computation of a dot product xT y is available
as the tool of obtaining sℓ :=

∑ℓ
i=1 s(i) with s(i) ∈ F such that∣∣∣∣∣∣ xT y − sℓ

xT y

∣∣∣∣∣∣ ≤ ϕ(uℓ) + ϕ(uk)cond(xT y), k ≥ 2, 1 ≤ ℓ ≤ k

for xT y , 0. Here cond(xT y) is the condition number of dot
product [7] defined by

cond(xT y) := 2
|xT ||y|
|xT y| , xT y , 0.

This means we can calculate xT y as if computed in k-fold
working precision and rounded into ℓ pieces of working
precision floating-point numbers si, 1 ≤ i ≤ ℓ. Fortunately,
we already have such accurate dot product algorithms pro-
posed in [7, 12, 14, 15] at hand. In this paper, the cases of
ℓ = 1, ℓ = ⌈k/2⌉ and ℓ = k appear.

Throughout the paper, we use the notation

Cℓ = {A · B}ℓk
which satisfies

|AB −Cℓ | ≤ ϕ(uℓ)|AB| + ϕ(uk)|A||B| (1)

for A ∈ Rm×p and B ∈ Rp×n. In the case of ℓ = 1, we
abbreviate it as C = {A · B}k.

3.2. Algorithm

We have discussed about the accuracy of LU and QR fac-
torizations in [6], respectively. Similarly, we should con-
sider how to define that of a Cholesky factorization.

Let A = AT ∈ Fn×n with aii > 0 for 1 ≤ i ≤ n. Suppose
a standard numerical Cholesky factorization of A runs to
completion. Here “run to completion” means that no imag-
inary root appears in the factorization process. Throughout
the paper, the Matlab-style notation

R = chol(A)

means a floating-point Cholesky factorization of A such
that

A ≈ RT R,

where R is an upper triangular matrix. Then it is known [3]
that the computed Cholesky factor R always satisfies

∥A − RT R∥
∥A∥ ≤ ϕ(u).

Thus it is similar to the case of the LU factorization that
not so much information on the accuracy of the Cholesky
factorization can be obtained from the residual norm ∥A −
RT R∥. Thus we again need an another criterion.

Suppose the exact Cholesky factorization A = R̂T R̂ runs
to completion. Then it holds that

κ(R̂) =
√
κ(A).

On the other hand, by some kind of ‘regularization’ due to
the rounding errors in floating-point arithmetic, heuristics
tells us that a computed factor R satisfies

κ(R) ≈
√

min{κ(A),u−1}

for any (positive definite) matrix A as long as the (numeri-
cal) Cholesky factorization of A runs to completion. Let x̃
be an approximate solution of a linear system Ax = b. If
κ(R) ≈

√
κ(A) <

√
εtol · u−1, then it holds that

∥A−1b − x̃∥
∥A−1b∥ . εtol.

However, as mentioned before, the Cholesky factoriza-
tion of A using floating-point arithmetic sometimes breaks
down due to an accumulation of the rounding errors. To
avoid the break-down, a diagonal shift applies to A such as
A + δI ∈ Fn×n for some δ > 0. Let λmax and λmin be the
largest and the smallest eigenvalues of A, respectively. In
the case of 0 < λmin ≪ δ = αλmax, it holds that

κ(A + δI) =
λmax + δ

λmin + δ
≈ λmax

δ
= α−1. (2)

On the other hand, in case of δ ≪ λmin, it holds that

κ(A + δI) ≈ λmax

λmin
= κ(A). (3)
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Let R̃ be a computed Cholesky factor of A + δI, i.e.,

R̃ = chol(A + δI).

Combining (2) and (3) yields

κ(R̃) ≈
√

min{κ(A), α−1}. (4)

The problem is how to choose a suitable constant α. In
the accurate inverse LU factorization in [6], it holds that

κ(AU−1) ≈ u · κ(A),

where U is an upper triangular matrix obtained by an LU
factorization of A. Similarly, the constant α in (4) becomes
a drop factor for the condition number of A such that

κ(R̃−T AR̃−1) ≈ α · κ(A).

So, it is desirable to choose α as small as possible.
By the backward error analysis of the floating-point

Cholesky factorization [16, 2], we have

A + ∆ = RT R, |∆| . nu|RT ||R| ≈ nu|A|.

In [13], Rump has modified and utilized it for verification
of positive definiteness:

A + ∆ = RT R, ∥∆∥ ≤ γu · tr(A),

where γ is some computable constant and γ ≈ nu (see
[13]). Let δ be defined by

δ := min{τ | A + τI ∈ Fn×n, τ ≥ γu · tr(A)}.

As long as A is positive definite, chol(A+ δI) never breaks
down and

(A + δI) + ∆̃ = R̃T R̃, ∥∆̃∥ ≤ δ.

In other words, if chol(A+ δI) fails, then A is proved to be
indefinite.

The idea of our algorithms is as follows: First, we com-
pute an approximate Cholesky factor R1 of A such that
A + δ1I ≈ RT

1 R1 in working precision. Next, we compute
an approximate inverse of X1 ≈ R−1

1 in working precision.
Then XT

1 AX1 is computed in doubled working precision
with its error bound and rounded into an interval matrix
〈G2, E2〉. Iteratively we compute an approximate Cholesky
factor R2 of G2 + δ2I in working precision, and then com-
pute an approximate inverse of T2 ≈ R−1

2 in working pre-
cision. After that, X1 · T2 is computed in doubled working
precision and stored into a matrix X2 in working precision,
i.e. {X1 · T2}2 = X2 ∈ Fn×n. Moreover, XT

2 AX2 is com-
puted in tripled working precision with its error bound and
rounded into an interval matrix 〈G3, E3〉, and so forth. In
general, we aim to develop an algorithm satisfying

κ(XT
mAXm) = max{ϕ(αm)κ(A), 1}.

By Sylvester’s law of inertia, if A is positive definite,
then XT

k−1AXk−1 are also positive definite for any k. How-
ever, Gk may be indefinite for some k due to the round-
ing errors. Taking the cases of treating interval matrices
〈Gk, Ek〉 into account, we need to modify the diagonal shift
δ.

By Weyl’s theorem, it holds that

|λi(XT
k−1AXk−1) − λi(Gk)| ≤ ∥Ek∥

since XT
k−1AXk−1 ∈ 〈Gk, Ek〉. To ensure the positive defi-

niteness of Gk+δkI with taking care of the rounding errors,
we set δk as

δk = γu · tr(Gk) + ∥Ek∥.
Our algorithm of an accurate inverse Cholesky factor-

ization with partial pivoting is based on the following iter-
ative refinement of an approximate inverse X of the exact
Cholesky factor R̂ of A by the multiplicative corrections:

Algorithm 3.1 (Robust inverse Cholesky factorization)
For a symmetric matrix A ∈ Fn×n with diag(A) ≥ 0 and
a specified tolerance εtol < 1, the following algorithm
calculates an upper triangular matrix X =

∑m
i=1 X(i),

X(i) ∈ Fn×n such that ∥XT AX − I∥ . εtol if such X exists.

1: Put X0 = I and k = 1. (ℓ := ⌈k/2⌉)
2: 〈Bk, EB〉 ← {A · Xk−1}ℓ+1

k .
3: 〈Ck, EC〉 ← {XT

k−1 · Bk}ℓ+1 + 〈O, |XT
k−1|EB〉.

4: 〈Gk, Ek〉 ← 1
2 (〈Ck, EC〉 + 〈CT

k , E
T
C〉)

5: If ∥mag〈Gk − I, Ek〉∥ < εtol, then X := Xk and stop.
6: Compute δk = γu · tr(Gk) + ∥Ek∥.
7: Compute S k = fl(Gk + δ̃kI) s.t. S k ≥ Gk + δkI.
8: Check diag(S k) ≥ 0. If not, then stop.
9: Cholesky factorization: S k ≈ RT

k Rk.
10: If Step 9 failed, then stop.
11: Tk ≈ R−1

k .
12: Xk ← {Xk−1 · Tk}ℓℓ+1.
13: Update k ← k + 1 and return to 2.

Note that high precision computations (of dot product) are
necessary only in Steps 2, 3 and 12. Among them, the re-
sults of the high precision computations are stored in high
precision in Steps 2 and 12. If the algorithm stops at Step
8 or 10, then A is proved to be indefinite. This is a mathe-
matical statement. Step 4 ensures that Gk is symmetric.

Remark 3.2 To avoid bad scaling, we can apply diagonal
scaling to the input matrix A with suitable powers of 2. See
[13] for details.

Remark 3.3 If Algorithm 3.1 runs to completion, the pos-
itive definiteness of A is also ensured.

4. Numerical results

We present some numerical results showing the behav-
ior of our proposed algorithm (Algorithm 3.1) of an inverse
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Table 1: Results for a scaled Hilbert matrix with n = 21
and κ(A) ≈ 8.16 · 1029 by the proposed algorithm

k κ(XT
k AXk) (γu)kκ(A) κ(Xk) (γu)−

k
2

0 8.16 · 1029 8.16 · 1029 1 1
1 2.84 · 1015 9.96 · 1015 1.70 · 107 9.05 · 106

2 1.08 · 102 1.22 · 102 8.71 · 1013 8.19 · 1013

3 1.00 < 1 9.03 · 1014 >
√
κ(A)

Table 2: Results for a Rump matrix with n = 500 and
κ(A) ≈ 4.76 · 1053 by the proposed algorithm

k κ(XT
k AXk) (γu)kκ(A) κ(Xk) (γu)−

k
2

0 4.76 · 1053 4.76 · 1053 1 1
1 5.97 · 1041 5.94 · 1041 8.92 · 105 8.95 · 105

2 1.41 · 1031 7.42 · 1029 1.83 · 1011 8.01 · 1011

3 3.69 · 1020 9.26 · 1017 3.59 · 1016 7.17 · 1017

4 1.00 · 1010 1.16 · 106 6.89 · 1021 6.41 · 1023

5 1.28 < 1 6.10 · 1026 >
√
κ(A)

6 1.00 < 1 6.90 · 1026 >
√
κ(A)

Cholesky factorization. All computations are done on Mat-
lab 2009a with IEEE 754 double precision arithmetic as
working precision (u = 2−53 ≈ 1.1 · 10−16). As a stopping
criterion for Algorithm 3.1, we set εtol = 10−6.

First, a scaled Hilbert matrix Hn is treated. Here Hn

is an integer (symmetric positive definite) matrix whose
elements are exactly representable in double precision
floating-point numbers for n ≤ 21. For n = 21, κ(H21) ≈
8.16 · 1029. We put A := H21. The result is displayed in
Table 1.

Next, a slightly modified version of Rump matrix [8] is
treated, which is based on randmat(n,cnd) in INTLAB
[10] and symmetric positive definite. We set n = 500 and
cnd = 1050. Then A ∈ F500×500 with κ(A) ≈ 4.76 · 1053 is
generated. The result is displayed in Table 2.

In both test cases, the condition number of the input ma-
trices (H21 and A) is dropped by a factor around γu in each
step until κ(XT

k AXk) ≈ 1. It turns out that we obtain an
adaptive and robust algorithm of an inverse Cholesky fac-
torization and verification of positive definiteness.
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