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Abstract—Mixed-mode oscillations(MMOs) have
been a hot topic in recent years. In this paper, we
report discovery of MMO-adding phenomena gener-
ated by the Bonhoeffer-van der Pol oscillator under
weak periodic perturbation. Period-adding is a well-
known phenomenon often caused in a MMO-sequence.
MMO-adding is a phenomenon where another MMO
sequence is added gradually to the base MMO se-
quence. MMO-adding phenomena are generated suc-
cessively. As far as numerical results are concerned,
these phenomena are often observed between various
neighboring successive two MMOs.

1. Introduction

Mixed-mode oscillations (MMOs) are nonlinear phe-
nomena where the solution has complicated waveforms
with alternating large- and small-amplitude excursions
in the observed time series. MMOs are a subject
of intensive research in wide variety fields (cf. [1–6],
and some references therein). As an example, in the
context of neuronal activity, their observation in the
Hodgkin-Huxley model [2] are known. In nervous sys-
tem, it is important to understand a neural excitabil-
ity. The MMOs is strongly related to bursting activi-
ties in neurons.

The Bonhoeffer-van der Pol (BVP) oscillator is an
attractive model for understanding behavior of neu-
rons because it is known as a simplified Hodgkin-
Huxley model [7–9]. Ravinovich et al. pointed out
in [8,9] that the BVP oscillator possesses rich dynam-
ics because a subcritical Andronov-Hopf bifurcation
(AHB) can occur. In the vicinity of the subcritical
AHB point, a focus and a relaxation oscillation can
coexist in close proximity.

We focus on phenomena if weak periodic perturba-
tion is applied to the BVP oscillator when the pa-
rameter set is chosen at the neighborhood of the sub-
critical AHB point. In our previous work, we re-
ported that this dynamics can produce various types
of MMOs [6]. Between existence regions of the two
neighboring MMOs, chaotic phenomena and periodic
steady states can be observed alternately.

In this paper, we pay attention to the periodic
steady states which are concerned with the MMOs.
We discover various sequence patterns consisting of
several sequences of the two neighboring MMOs. Es-
pecially, the attractor increases the number of the com-
prising sequences of MMOs as the parameter corre-
sponding to an angular frequency of the forcing term
is changed. We compare the property with that of
the MMOs by calculating 1-parameter bifurcation di-
agram and the largest Lyapunov exponent.

2. Bifurcations in the BVP oscillator

The driven BVP oscillator is expressed by the sec-
ond order non-autnomous differential equation as fol-
lows referring to [6]:

εẋ = y − (−x + x3)

ẏ = −x − k1y + B0 + B1 sinωτ (
d

dτ
= ·).

(1)

We assume that ε � 1, and in this case the dynamics
of Eq.(1) is a slow-fast system. We fix ε = 0.1 through-
out this study. The other parameters are chosen in
terms of the situation described below. In particular,
we employ a weak periodic forcing term, namely the
case of small B1 value.

In this section, we investigate the case where no pe-
riodic perturbation is applied to this dynamics, namely
B1 = 0. If the value of k1 is zero, the circuit is well-
known van der Pol oscillator. In this case, for large B0,
an equilibrium point of Eq.(1) is a stable. When B0 be-
comes smaller, the stable focus losses the stability and
a limit cycle is born by the supercritical Andronov-
Hopf bifurcation (AHB). In other words, the steady
state changes at the supercritical Andronov-Hopf bi-
furcation (AHB) point. The van der Pol oscillator has
always only one attractor. Note that the situation for
small k1 is the same as above.

In contrast, for larger k1, the subcritical AHB can
take place. Figure 1 presents 1-parameter bifurca-
tion diagram for k1 = 0.9. In the figure, the abscissa
and ordinate denote the parameter B0 and the value
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of x, respectively. This figure is obtained using XP-
PAUT [10]. The solid and dotted lines denote a stable
and an unstable focus, respectively. The filled circles
present the extrema of a relaxation oscillation. The
open circles show the extrema of an unstable periodic
oscillation. In this case, the subcritical AHB occurs
at the point Bc

0(≈ 0.20543). It should be noted that
the following three cases appear according to the value
of B0. (a) B0 > Bf

0 (≈ 0.211), there exists a stable
focus only. (b) Bc

0 5 B0 5 Bf
0 , a stable focus, an un-

stable limit cycle, and a relaxation oscillation coexist.
(c) B0 < Bc

0, a relaxation oscillation is observed as a
steady state. In the cases of (a) and (c), the dynamics
has only one stable attractor. On the other hand, in
the case of (b), either the stable focus or the relaxation
oscillation appears depending on the initial state. In
this paper, we pay attention to the latter situation,
because from the Fig.1, two stable solutions coexist in
close proximity. Then, we are interested in how the
dynamics is influenced when weak periodic perturba-
tion is applied to the circuit in the case of (b). In the
following discussions, we fix the parameters k1 = 0.9,
B0 = 0.207, and we apply weak periodic perturbation
(B1 = 0.01) to this dynamics1.
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Figure 1: Structure in the vicinity of the subcritical
AHB point for k1 = 0.9.

3. MMO-adding phenomena

In our previous work, we reported the discovery of
the sequences of MMOs from the BVP oscillator under
weak periodic perturbation [6]. First, we review these
MMOs.

Figure 2 shows an example of MMOs for ω = 0.57,
where time series plots of x, and the trajectory on
the phase plane with the nullclines of Eq.(1) and a

1All numerical integrations of Eq.(1) are conducted by
fourth-order Runge-Kutta method with a step size 2π/ω/1024,
and we set the initial state (x0, y0) to (0, 0) throughout this
paper.
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(b) Trajectory on the phase plane.

Figure 2: Example of MMOs for ω = 0.57 (13).
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Figure 3: Saddle-node bifurcation point (ωSN ) of the
1s (1 5 s 5 11).

point on the Poincaré mapping2 are presented. The se-
quence consists of one large excursion and three small
peaks in one period. Note that the trajectory clearly
moves back and forth periodically between the stable
focus and the relaxation oscillation. To distinguish
various sequences of MMOs, we introduce the nota-
tion Ls referring to [1], where L denotes the number
of large-amplitude excursions, and s represents that of
small-amplitude peaks.

By decreasing ω, we find the sequences 1s where the
number of small peaks s increases monotonically. So
far, for 0 < ω < 1, we find that s changes from 1 to 11
with the appropriate values of ω. A saddle-node(SN)
and a period-doubling(PD) bifurcation occur at ωSN

and ωPD, respectively. By decreasing ω, the sequence
1s appears at ωSN , and disappears at ωPD. The val-
ues of ωSN and ωPD are calculated by the method

2We take the Poincaré mapping at every τ = 2πn/ω, where
n is an integer.
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Figure 4: Variation of largest Lyapunov exponent for
0.57 5 ω 5 0.72.
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(b) Trajectory on the phase plane.

Figure 5: Alternation of sequences between the 12 and
13 for ω = 0.64 ([12, 13 × 1]).

proposed by Kawakami [11]. Figure 3 shows the val-
ues of ωSN of the 1s. From the figure, the ωSN decays
exponentially as s increases.

Next, we explain what behavior is observed between
the existence regions of 1s and 1s+1. Figure 4 shows
the graph of the largest Lyapunov exponent between
the existence regions of 12 and 13. The exponent
is calculated by the algorithm of Shimada and Na-
gashima [12]. Both existence regions of 12 and 13 are
indicated by their labels with the arrowed lines. As far
as numerical result is concerned, it is suggested that
crucial complicated phenomena and its related bifur-
cations can occur. In particular, chaotic phenomena
and periodic steady states can be observed alternately
when the value of ω is gradually changed. In the fol-
lowing, we focus on the periodic steady states which
are concerned with the sequences of MMOs.

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 1500  1520  1540  1560  1580  1600

x

τ

12       13      13      12      13      13 ···

Figure 6: The sequence pattern consisting of the 12

and the two series of 13 for ω = 0.62 ([12, 13 × 2]).

Table 1: Values of ωSN and ωPD of the solution
[12, 13 × n] and its period of the Poincaré mapping.

n Solution ωPD ωSN Period

1 [12, 13 × 1] 0.63643 0.64803 2

2 [12, 13 × 2] 0.61633 0.62294 3

3 [12, 13 × 3] 0.60658 0.61085 4

4 [12, 13 × 4] 0.60090 0.60385 5

5 [12, 13 × 5] 0.59723 0.59937 6

6 [12, 13 × 6] 0.59470 0.59630 7

7 [12, 13 × 7] 0.59287 0.59409 8

8 [12, 13 × 8] 0.59149 0.59245 9

9 [12, 13 × 9] 0.59042 0.59118 10

10 [12, 13 × 10] 0.58957 0.59019 11

11 [12, 13 × 11] 0.58889 0.58940 12

12 [12, 13 × 12] 0.58865 0.58875 13

13 [12, 13 × 13] 0.58815 0.58822 14

Figure 5 shows a periodic steady state with inter-
esting property. From Fig.5(a), the waveform follows
such a pattern that the sequences of 12 and 13 appear
alternately. The sequence pattern is periodic solution
with period 2 and this sequence is denoted by 1213.
For slightly smaller ω, there exists another periodic
sequence pattern. Figure 6 displays the discovered
possible pattern which consists of the sequence of 12

and two series of 13. In this case, the attractor is the
periodic solution with period 3 and the sequence pat-
tern should be denoted by 121313. This phenomenon
should be called MMO-adding phenomenon. Remark
that the this phenomenon occurs successively.

To define the sequence generated by MMO-adding
phenomena the notation 1s is extended to [1s, 1s+1 ×
n], where n denotes the number of the series of 1s+1

sequences. From a numerical calculation, the sequence
pattern [1s, 1s+1×n] corresponds to a (n+1) periodic
point of the Poincaré mapping. The PD and the SN
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bifurcation occur at ωSN and ωPD, respectively, which
is quite same in the case of MMOs. Table 1 presents
the values of ωSN and ωPD of the solution [12, 13 × n]
(n = 1, 2, · · · , 13) and its period of the Poincaré map-
ping. Figure 7 shows ∆ω of the [12, 13 × n]. The ωSN

of the [12, 13 × n] becomes smaller for larger n. Com-
pared to Fig.3, both shapes of graph resemble each
other although the scale of vertical axis is not same.

Figure 8 displays a 1-parameter bifurcation dia-
gram3 with respect to ω and the corresponding largest
Lyapunov exponent. The axis range of abscissa is
chosen around the existence region of 13. When ω
is decreased from 0.6, a multiple periodic solution
[12, 13 × n] changes to chaos via succeeding PD bifur-
cations, and then settles down to the neighboring pe-
riodic state, namely [12, 13×n+1]. Such phenomenon
continues many times. In other words, the cascade
structure can be observed as shown in Fig.8 which
should be investigated more in detail.
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Figure 7: Saddle-node bifurcation point (ωSN ) of the
[12, 13 × n].

4. Concluding remarks

We reported that the complicated behaviors can be
produced from the simple driven oscillator where pe-
riodic perturbation is small. In particular, we discov-
ered the MMO-adding phenomena observed between
the existence regions of the two neighboring MMOs.
Since the complicated sequence patterns including the
MMOs are periodic steady states, we will investigate
the phenomena more in detail from the dynamical
point of view in the nearest future.
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