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Abstract—In this paper, an algorithm for accurately cal-
culating singular values of matrices is proposed. The pro-
posed algorithm can treat the cases where the matrices are
extremely ill-conditioned, i.e. their condition numbers are
allowed to go far beyond the bounds of base precision such
as IEEE standard 754 double precision. The algorithm re-
quires standard numerical algorithms, which are commonly
implemented in several numerical libraries such as BLAS
and LAPACK, and an algorithm for accurate matrix mul-
tiplication. Numerical results are presented for illustrating
the performance of the proposed algorithm.

1. Introduction

This paper is concerned with accurate singular value de-
composition (SVD) of an extremely ill-conditioned matrix:
Let A ∈ Rn×n. Then the SVD of A is expressed by

A = UΣVT , U,V,Σ ∈ Rn×n

where both U and V are orthogonal matrices consisting of
all singular vectors, and Σ is a diagonal matrix such that

Σ = diag(σ1, σ2, . . . , σn).

Here σi for i = 1, 2, . . . , n are singular values of A.
We regard A as ill-conditioned, if condition number of A

is very large. Here the condition number of A is defined by

κ(A) = ∥A∥2 · ∥A−1∥2 =
σmax

σmin
,

where σmax := max1≤i≤n σi and σmin := min1≤i≤n σi.
Let F be a set of floating-point numbers. Let u denote

the unit round-off of floating-point arithmetic. In IEEE
754 double precision (binary64), u = 2−53 ≈ 1.1 × 10−16.
In general, if κ(A) is large, then errors of results obtained
by floating-point arithmetic for linear systems, eigenvalue
problems and singular value problems also become large.
For example, let us consider a linear system Ax = b with
A being nonsingular. Let x∗ = A−1b, which is the exact so-
lution of Ax = b. Let x̃ denote an approximate solution of
Ax = b by a standard numerical algorithm such as Gaussian
elimination. Then it holds that [5]

∥x∗ − x̃∥
∥x∗∥ ≈ O(u)κ(A), 1 ≤ i ≤ n.

Therefore, if κ(A) > u−1, then we cannot expect the ac-
curacy of x̃. It is also true for eigenvalue problems and
singular value problems.

The purpose of this article is to propose an algorithm for
accurately calculating singular values of a matrix whose
condition number goes far beyond u−1. Such cases have
been treated in [7, 8] for accurate matrix factorizations.

We also consider symmetric eigenvalue problems: Let
A = AT ∈ Rn×n. Then the eigenvalue decomposition of A is
expressed by

A = XDXT , X,Σ ∈ Rn×n

where X is an orthogonal matrix and consists of all eigen-
vectors of A, and D is a diagonal matrix such that

D = diag(λ1, λ2, . . . , λn).

Here λi for i = 1, 2, . . . , n are eigenvalues of A.
From the relation between eigenvalues and singular val-

ues of a symmetric matrix, there is some k satisfying |λk | =
σi, i = 1, 2, . . . , n. Throughout the paper, we assume that

σ1 ≥ σ2 ≥ . . . ≥ σn > 0.

2. Accurate matrix multiplication

Suppose for x, y ∈ Rn a dot product xT y can be computed
in arbitrarily high accuracy. Namely, for any k, ℓ (k ≥ ℓ)
we can obtain sℓ :=

∑ℓ
i=1 s(i) with s(i) being floating-point

numbers satisfying∣∣∣∣∣∣ xT y − sℓ
xT y

∣∣∣∣∣∣ ≤ O(uℓ) + O(uk)cond(xT y), (xT y , 0). (1)

Here cond(xT y) denotes condition number of dot product
[9] such that

cond(xT y) := 2
|xT ||y|
|xT y| , xT y , 0.

Therefore, Eq. (1) means that we need to calculate xT y in
k-fold base precision and round the result into ℓ-fold base
precision. To satisfy Eq. (1), we can use algorithms in [9,
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10, 11, 13, 14], that are based on error-free transformation
of floating-point arithmetic.

We extend it to matrix multiplication. We use the fol-
lowing notation

Cℓ = {A · B}ℓk,
which means for A ∈ Rm×p と B ∈ Rp×n it holds that

|AB −Cℓ | ≤ O(uℓ)|AB| + O(uk)|A||B|.

Here |A| denotes the matrix of taking the absolute value of
A componentwise. Moreover, inequality for matrices such
as A ≤ B means Ai j ≤ Bi j for all (i, j). If ℓ = 1, then we
abbreviate C = {A · B}k.

3. Algorithm for accurate SVD

Several algorithms for SVD [1, 2, 3, 6] have been pro-
posed. Most of the SVD algorithms are backward stable;
Let σ̃i denote approximations of σi. Then it holds that

|σi − σ̃i|
σ1

≈ O(u), 1 ≤ i ≤ n. (2)

It is equivalent to

|σi − σ̃i|
σn

≈ O(u)κ(A), 1 ≤ i ≤ n.

Thus, if κ(A) = σ1/σn is large, then the accuracy of rela-
tively small singular values become worse.

We present the following algorithm for accurate SVD.
When we input A ∈ Rn×n and a tolerance εtol > u, the
algorithm outputs σ̃i ∈ F, 1 ≤ i ≤ n satisfying

|σi − σ̃i|
σi

. εtol, 1 ≤ i ≤ n.

Algorithm 1 Accurate singular value decomposition.

0: Input A ∈ Rn×n and tolerance εtol > u.
1: Put U0 = V0 = I and k = 1.
2: T ← {UT

k−1 · A}k.
3: Bk ← T · Vk−1.
4: σ̃i = (Bk)ii, gi =

∑
j,i |Bk |i j for all i.

5: If εtol · σ̃i ≥ gi for all i, then
U = Uk, V = Vk, Σ = diag(σ̃i) and stop.

6: SVD of Bk: Bk ≈ WkΣkVT
k .

7: Uk ← {Uk−1 ·Wk}kk.
8: Update k ← k + 1 and return to 2.

Higher precision arithmetic is needed only in Steps 2 and 7.
For the SVD algorithm in Step 6, it is necessary to satisfy
Eq. (2).

4. Algorithm for accurate eigenvalue decomposition

Let A = AT ∈ Rn×n. Let σi and λi, i = 1, 2, . . . , n be
singular values and eigenvalues of A, respectively. Suppose

|λ1| ≥ |λ2| ≥ . . . ≥ |λn| > 0.

Then it holds that

σi = |λi|, i = 1, 2, . . . , n.

For the singular value decomposition A = UΣVT and the
eigenvalue decomposition A = XDXT , there exists a diag-
onal matrix S ∈ Rn×n satisfying

Σ = DS , |S ii| = 1, i = 1, 2, . . . , n.

Here eigenvectors and singular vectors of A are equivalent
because A is symmetric, so that we can put X = U. Then,
we have

A = UΣVT = UDS VT .

If D is nonsingular, then S VT = XT = UT , which yields

S = UT V.

Since S is diagonal, it is sufficient to compute

S ii =

n∑
k=1

UkiVki, i = 1, 2, . . . , n

and set
λi = S iiσi, i = 1, 2, . . . , n.

We present the following algorithm for accurate eigen-
value decomposition. When we input A = AT ∈ Rn×n and a
tolerance εtol > u, the algorithm outputs λ̃i ∈ F, 1 ≤ i ≤ n
satisfying ∣∣∣∣∣∣λi − λ̃i

λi

∣∣∣∣∣∣ . εtol, 1 ≤ i ≤ n.

Algorithm 2 Accurate eigenvalue decomposition for sym-
metric matrices.

0: Input A = AT ∈ Rn×n and tolerance εtol > u.
1: Compute an accurate SVD of A s.t.

A ≈ UΣVT by Algorithm 1.
2: for i = 1 : n

si = sign
(∑n

k=1 UkiVki

)
;

λ̃i = si · Σii;
end

3: X = U, D = diag(λ̃i) and stop.

In Step 2, we use the sign function sign for enforcing si =

±1, because U and V are not exactly orthogonal due to the
rounding errors, and the computation si =

∑n
k=1 UkiVki also

involves rounding errors.

5. Numerical results

We evaluate the performance of the proposed algorithm
(Algorithm 2), which also includes Algorithm 1. We use a
PC with 1.86 GHz Intel Core 2 Duo CPU and Matlab 2009a
with INTLAB 5.5 [12]. All computations are done in IEEE
754 double precision arithmetic (u = 2−53 ≈ 10−16). To
generate test matrices, we adopt the following Matlab func-
tion:
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function A = randmatsym(n,cnd)

% A real symmetric n-by-n matrix A is

% generated with a specified condition

% number cnd.

d = logspace(1,log10(cnd),n);

D = diag((-1).ˆ[1:n].*d);

X = randorth(n); % random orthogonal

k = ceil(log(cnd)/log(2ˆ53));

% Accurate computation of X*D*X’ with

% k-fold working precision

T = acc_mm(D,X’,{0 k});

A = acc_mm(X,T,{0 k});

% Enforce symmetricity of A

if iscell(A)

for i=1:length(A)

L = tril(A{i},-1);

A{i} = L + L’ + diag(diag(A{i}));

end

else

A = 0.5*(A + A’);

end

Using this function, we can generate a random symmetric
matrix A with specified dimension n and condition number
cnd. Moreover, the matrix A has almost one half each of
positive and negative eigenvalues. If cnd is greater than
u−1, we use a cell array to express A as

A = A{1} + A{2} + . . . + A{k}

to avoid the reduction of condition number due to the
rounding errors.

First, we treat a matrix with condition number being al-
most the limit of double precision arithmetic. We set n = 5
and cnd = 1015 as follows:

>> n=5; cnd=1e15; A=randmatsym(n,cnd);

>> d=sort(eig(sym(A,’f’))) % symbolic comput.

d =

-1000000000000000.175990519298626

-100000000.00553914639556741955906

-10.01009231100684299751196319367

31622.778285161926155448656332726

316227766016.82739931477488099294

Here d is obtained by Symbolic Math Toolbox, so that it
has very high accuracy. Thus, we can regard d as the exact
eigenvalues of A.

We compute eigenvalues by a Matlab’s built-in function
eig, which calls LAPACK’s DSYEV using a standard nu-
merical algorithm for symmetric eigenvalue problems.

>> d1=sort(eig(A)) % Matlab built-in (LAPACK)

d1 =

-1.000000000000000e+15

-9.999999994796611e+07

-9.995486841962371e+00

3.162278320369064e+04

3.162277660168737e+11

>> abs(double((d-d1)./d)) % relative error

ans =

1.759905192986260e-16

5.757303270581678e-10

1.459074361223595e-03

1.555375265686662e-07

1.464733711631263e-13

It can be seen from this result that by the standard numer-
ical algorithm, the accuracy of relatively large computed
eigenvalues is high in terms of relative error, while that
of relatively small ones is low. Therefore, if the condi-
tion number becomes larger, then it is estimated that the
standard numerical algorithm cannot compute a good ap-
proximation for relatively small eigenvalues.

We next compute eigenvalues by the proposed algorithm
(Algorithm 2), which is implemented for Matlab as a func-
tion acceig.

>> d2=sort(acceig(A)) % proposed algorithm

k = 2

k = 3

d2 =

-1.000000000000000e+15

-1.000000000055391e+08

-1.001009231100685e+01

3.162277828516193e+04

3.162277660168274e+11

>> abs(double((d-d2)./d)) % relative error

ans =

1.759905192986260e-16

4.205310678490546e-16

2.378162025519442e-16

1.341712723442831e-16

2.130315742304067e-17

It can be seen that by the proposed algorithm, highly accu-
rate results are obtained, even for relatively small eigenval-
ues.

As the second example, we fix n to 100 and vary cnd as
1020, 1040, . . ., 10100. Table 1 displays computing time and
the maximum relative error for approximate eigenvalues
obtained by the proposed algorithm. Moreover, the number
of iteration k in Algorithm 1, which is called from Algor-
tihm 2, is also shown. We set εtol = 10−6 as a tolerance for
the proposed algorithm.

Here the proposed algorithm increases the number of it-
erations adapting to the condition number. It turns out that
highly accurate eigenvalues can efficiently be computed by
the proposed algorithm even for ill-conditioned problems.
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Table 1: Results by the proposed algorithm: Computing
time t，maximum relative error and the number of itera-
tions k (n = 100).

κ(A) t (sec) Maximum relative error k
1020 0.24 2.78 × 10−11 3
1040 1.02 6.22 × 10−13 5
1060 1.96 2.98 × 10−13 6
1080 3.51 5.11 × 10−11 7
10100 6.87 4.17 × 10−13 9

6. Conclusion

In this paper, we proposed accurate numerical algo-
rithms for singular value problems and symmetric eigen-
value problems. In general, the condition number of a
given matrix is not known in advance, so that we do not
know how high computational precision is required. There-
fore, it is difficult for a standard numerical algorithm to
compute accurate results for all eigenvalues. Using the pro-
posed algorithms, it is possible to do it adaptively increas-
ing the computational precision.

The proposed algorithms consist of standard numerical
algorithms, that are implemented in LAPACK, and algo-
rithm for accurate matrix multiplication. Moreover, it is
shown in [10, 11] that accurate matrix multiplication can
efficiently be implemented using BLAS. Thus, the pro-
posed algorithms have scalability and portability.

To prove the convergence of the proposed algorithms re-
mains to be solved.
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