# Verified Error Bounds for Double Roots of Nonlinear Equations 

Siegfried M. Rump ${ }^{1,2}$ and Shin'Ichi Oishi ${ }^{2}$<br>${ }^{1}$ Institute for Reliable Computing, Hamburg University of Technology, Schwarzenbergstraße 95, Hamburg 21071, Germany and ${ }^{2}$ Waseda University, Faculty of Science and Engineering, 2-4-12 Okubo, Shinjuku-ku, Tokyo 169-0072, Japan. email: rump@tu-harburg.de.


#### Abstract

It is well known that it is an ill-posed problem to decide whether a function has a multiple root. For example, an arbitrarily small perturbation of a real polynomial may change a double real root into two distinct real or complex roots. In this paper we describe a computational method for the verified computation of a complex disc to contain exactly 2 roots of a univariate nonlinear function. The function may be given by some program. Computational results using INTLAB, the Matlab toolbox for reliable computing, demonstrate properties and limits of the method.


## 1. Introduction

It is well known that to decide whether a univariate polynomial has a multiple root is an ill-posed problem: An arbitrary small perturbation of a polynomial coefficient may change the answer from yes to no. In particular a real double root may change into two simple (real or complex) roots.

Therefore it is hardly possible to verify that a polynomial or a nonlinear function has a double root if not the entire computation is performed without any rounding error, i.e. using methods from Computer Algebra.

Let a suitably smooth nonlinear function $f: \mathbb{K} \rightarrow \mathbb{K}$ for $\mathbb{K} \in\{\mathbb{R}, \mathbb{C}\}$ be given with a numerically double root $\tilde{x}$. In a recent paper [8] we dealt with the problem as follows. We calculated an inclusion $X \in \mathbb{K} \mathbb{K}$ such that a slightly perturbed function $g$ has a true double (or $k$-fold) root within $X$. Similar methods have been described in [1].

For real or complex polynomials we solved the problem in [7] in a different way. We presented ten methods to calculate a complex disc containing exactly or at least $k$ roots of the original polynomial. In the present paper we summarize how to treat the problem in the same way for double roots of general nonlinear functions. In a subsequent full paper methods for $k$-fold roots will be presented.

There is not much literature on this problem. In [3] Neumaier gives a sufficient criterion, namely that

$$
\begin{equation*}
\left|\mathfrak{R} \frac{f^{(k)}(z)}{k!}\right|>\sum_{i=0}^{k-1}\left|\frac{f^{(i)}(\tilde{z})}{i!}\right| r^{i-k} \tag{1}
\end{equation*}
$$

is satisfied for all $z$ in the disc $D(\tilde{z}, r)$. Under this condition
he proves that $f$ has exactly $k$ roots in $D$. In our formulation we can omit the $(k-1)$-st summand on the right of (1), which is the first derivative in case of double roots, and we can derive a direct method for the inclusion. Moreover, we give a constructive scheme how to find a suitable disc $D$.

In [2] a general method for systems of nonlinear equations is described based on the topological degree. However, sometimes significant computational effort is needed.

## 2. Inclusion of 2 roots

Let a function $f: D_{0} \rightarrow \mathbb{C}$ being analytic in the open disc $D_{0}$ be given. We suppose some $\tilde{x} \in D_{0}$ to be given such that $\tilde{x}$ is a numerically double root, i.e.

$$
\begin{equation*}
f(\tilde{x}) \approx 0 \approx f^{\prime}(\tilde{x}) \tag{2}
\end{equation*}
$$

We first give a sufficient criterion for a certain disc $Y$ near $\tilde{x}$ to contain (at least) 2 roots of $f$.

The analytic function admits for $z, \tilde{z} \in D_{0}$ the Taylor expansion

$$
\begin{equation*}
f(z)=\sum_{v=0}^{\infty} c_{v}(z-\tilde{z})^{v} \tag{3}
\end{equation*}
$$

where $c_{v}=\frac{1}{v!} f^{(v)}(\tilde{z})$ denote the Taylor coefficients. Let $X \subset D_{0}$ denote a real interval or complex closed disc near $\tilde{x}$ such that $f^{\prime}(\hat{x})=0$ for some $\hat{x} \in X$. The assumption (2) implies that it is likely that there is a simple root of $f^{\prime}$ near $\tilde{x}$, so that the corresponding $X$ can be computed by well-known verification routines [5]. Such a routine is implemented as Algorithm verifynlss in INTLAB, the Matlab toolbox for reliable computing ([6], see http://www.ti3.tu-harburg.de/rump).

We aim to prove that some closed disc $Y \subset D_{0}$ with $X \subseteq Y$ contains at least 2 roots of $f$.

We expand $f$ with respect to $\hat{x}$ and split the series into

$$
\begin{align*}
f(y) & =f(\hat{x})+\left(\frac{1}{2} f^{\prime \prime}(\hat{x})+\sum_{v=3}^{\infty} c_{v}(y-\hat{x})^{v-3}\right)(y-\hat{x})^{2} \\
& =f(\hat{x})+g(y)(y-\hat{x})^{2} . \tag{4}
\end{align*}
$$

Note that $g$ is holomorphic in $D_{0}$, and that $c_{1}=0$ by assumption. Later we will see how to estimate $g(Y)$; for the moment we assume that an inclusion interval $G$ with $\{g(y): y \in Y\} \subseteq G$ is known and $0 \notin G$. With this we can state the following theorem.

Theorem 1 Let holomorphic $f: D_{0} \rightarrow \mathbb{C}$ in the open disc $D_{0}$ be given, and closed discs $X, Y \subset D_{0}$ with $X \subseteq Y$. Assume there exists $\hat{x} \in X$ with $f^{\prime}(\hat{x})=0$. Define $g(y)$ as in (4) and let $G \in \mathbb{I} \mathbb{C}$ be a complex interval with $g(y) \in G$ for all $y \in Y$. Assume $0 \notin G$, and define the two functions $N_{1,2}: Y \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
N_{1,2}(y):=\hat{x} \pm \sqrt{-f(\hat{x}) / g(y)} . \tag{5}
\end{equation*}
$$

Assume

$$
\begin{equation*}
N_{v}(Y) \subseteq Y \quad \text { for } \quad v=1,2 . \tag{6}
\end{equation*}
$$

Then, counting multiplicities, the function $f$ has at least two roots in $Y$.

Proof. Since $g(y) \neq 0$ for $y \in Y$ both $N_{1,2}$ are continuous functions. Complex intervals are non-empty, convex, closed and bounded, so Brouwer's Fixed Point Theorem and (6) imply the existence of $y_{1,2} \in Y$ with $N_{v}\left(y_{v}\right)=0$ or

$$
\begin{equation*}
\left(y_{v}-\hat{x}\right)^{2}=-f(\hat{x}) / g\left(y_{v}\right) \quad \text { for } v=1,2 . \tag{7}
\end{equation*}
$$

Now (4) implies

$$
\begin{equation*}
0=f(\hat{x})+g\left(y_{v}\right)\left(y_{v}-\hat{x}\right)^{2}=f\left(y_{v}\right) \quad \text { for } v=1,2 . \tag{8}
\end{equation*}
$$

If $y_{1} \neq y_{2}$, the assertion follows. If $y_{1}=y_{2}$, then (5) implies $f(\hat{x})=0=f^{\prime}(\hat{x})$, so that $y_{1}=y_{2}$ is a double root of f . The theorem is proved.

The main assumption to check in Theorem 1 is (6). This, however, can be performed directly by interval evaluation noting that for all $x \in X$ and for all $y \in Y$

$$
\begin{equation*}
N_{1,2}(y) \in X \pm \sqrt{-f(X) / g(Y)} \tag{9}
\end{equation*}
$$

Concerning the computation of $g(Y)$ one can show that

$$
g(Y) \subseteq X+\left\{z \in \mathbb{C}:|z| \leq \frac{1}{2} \operatorname{diam}(Y)^{2}\left|f^{\prime \prime}(Y)\right|\right\}
$$

Note that the diameter of this inclusion is proportional to the square of the diameter of $Y$, so in general we may expect a good quality.

Theorem 1 proves existence of at least 2 roots of $f$ in $Y$. It remains the problem to find a suitable inclusion interval $Y$. Note that necessarily the inclusion interval is complex: If the assumptions of Theorem 1 are satisfied for some function $f$, they are by continuity satisfied for a suitably small perturbation of $f$ as well. But an arbitrary small perturbation of $f$ may move a double real root into two complex roots.

Since $\hat{x} \in X$ is necessary by assumption, a starting interval may be $Y^{0}:=X$. However, the sensitivity of a double root is $\varepsilon^{1 / 2}$ for an $\varepsilon$-perturbation of the coefficients. But the quality of the inclusion $X$ of the simple root of $f^{\prime}$ can be expected to be nearly machine precision.

The functions $N_{v}$ in (5) represent a Newton step. Thus a suitable candidate for a first inclusion interval is $Y^{(0)}$ := $X \pm \sqrt{-f(X) / g(X)}$ in (9). This already defines an iteration

Table 1: Radius of inclusion for nearby root.

| e | $\operatorname{rad}(\mathrm{Y})$ | iter |
| :---: | :---: | :---: |
| $10^{-1}$ | $1.74 \cdot 10^{-7}$ | 1 |
| $10^{-2}$ | $5.59 \cdot 10^{-7}$ | 1 |
| $10^{-3}$ | $1.93 \cdot 10^{-6}$ | 1 |
| $10^{-4}$ | $5.71 \cdot 10^{-6}$ | 1 |
| $10^{-5}$ | $1.71 \cdot 10^{-5}$ | 1 |
| $10^{-6}$ | failed | 5 |

scheme, where $Y^{m+1} \subset \operatorname{int}\left(Y^{m}\right)$ verifies the conditions of Theorem 1.

However, it is superior for such an interval iteration to slightly "blow-up" the intervals. This process is called "epsilon-inflation". The term was coined in [4] and the process was analyzed over there. Thus we define the iteration as follows:

$$
\begin{align*}
& Y:=X \\
& \text { repeat } \\
& \quad Z:=Y \circ \epsilon  \tag{10}\\
& \quad Y:=X \pm \sqrt{-f(X) / g(Y)} \\
& \text { until } Y \subset \operatorname{int}(Z)
\end{align*}
$$

Here $Y \circ \epsilon$ denotes a slight relative and absolute inflation. We use $Z:=Y \cdot\left(1 \pm 10^{15}\right) \pm 10^{-324}$, where the constants are adapted to IEEE 754 double precision with relative precision $10^{-16}$.

## 3. Computational results

We briefly report some computational result. Consider
$f(x):=(3 x-2)^{2} \sin (x)=(9 x \sin (x)-12 \sin (x)) x+4 \sin (x)$.
The expansions are generated by the symbolic toolbox of Matlab. First we use the method described in [8]. It is satisfied that a function

$$
\begin{equation*}
\tilde{f}(x):=f(x)+\varepsilon \quad \text { with } \quad|\varepsilon|<1.3 \cdot 10^{-31} \tag{12}
\end{equation*}
$$

has a precise double root in the interval

$$
\begin{equation*}
X 1:=[0.66666666666666,0.66666666666667] \tag{13}
\end{equation*}
$$

Using Theorem 1 it is verified that two roots of the original function $f$ are enclosed in

$$
\begin{equation*}
X 2:=\left\{z \in \mathbb{C}:|z-0.66666666666667|<10^{-14}\right\} \tag{14}
\end{equation*}
$$

Next we test the influence of the nearness of another root to a multiple root. Consider $f(x):=(3 x-2)^{2} \sin (x)\left(x-\frac{2}{3}+e\right)$ for different values of $e:=10^{-k}$. There is a double root $\frac{2}{3}$ and a nearby simple root $\frac{2}{3}-e$. An increase of the radius and thus decrease of accuracy can be observed in Table 1 when another root approaches the cluster.

This effect becomes worse when two clusters are near each other. Consider $f(x):=(3 x-2)^{2} \sin (x)\left(x-\frac{2}{3}+e\right)^{2}$

Table 2: Radius of inclusion for nearby double root.

| e | $\operatorname{rad}(\mathrm{Y})$ | iter |
| :---: | :---: | :---: |
| $10^{-1}$ | $1.16 \cdot 10^{-6}$ | 1 |
| $10^{-2}$ | $1.30 \cdot 10^{-5}$ | 1 |
| $9 \cdot 10^{-3}$ | $1.29 \cdot 10^{-6}$ | 1 |
| $8 \cdot 10^{-3}$ | $1.67 \cdot 10^{-5}$ | 1 |
| $7 \cdot 10^{-3}$ | $1.60 \cdot 10^{-5}$ | 1 |
| $6 \cdot 10^{-3}$ | $2.10 \cdot 10^{-5}$ | 1 |
| $5 \cdot 10^{-3}$ | $2.39 \cdot 10^{-5}$ | 1 |
| $4 \cdot 10^{-3}$ | $2.90 \cdot 10^{-5}$ | 1 |
| $3 \cdot 10^{-3}$ | $3.63 \cdot 10^{-5}$ | 3 |
| $2 \cdot 10^{-3}$ | failed | 5 |



Figure 2: Individual plots near first and second double root.

## Acknowledgments

The authors would like to thank F. Bünger and P. Batra for fruitful discussions.

## References

[1] Y. Kanazawa and S. Oishi. Calculating Bifurcation Points with Guaranteed Accuracy. IEICE Trans. Fundamentals, E82-A(6):1055-1061, 1999.
[2] R.B. Kearfott, J. Dian, and A. Neumaier. Existence verification for singular zeros of complex nonlinear systems. SIAM J. Numer. Anal. (SINUM), 38(2):360379, 2000.
[3] A. Neumaier. An Existence Test for Root Clusters and Multiple Roots. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 68(6):256-257, 1988.
[4] S.M. Rump. Kleine Fehlerschranken bei Matrixproblemen. PhD thesis, Universität Karlsruhe, 1980.
[5] S.M. Rump. Solving Algebraic Problems with High Accuracy. Habilitationsschrift. In U.W. Kulisch and W.L. Miranker, editors, A New Approach to Scientific Computation, pages 51-120. Academic Press, New York, 1983.
[6] S.M. Rump. INTLAB - INTerval LABoratory. In Tibor Csendes, editor, Developments in Reliable Computing, pages 77-104. Kluwer Academic Publishers, Dordrecht, 1999.
[7] S.M. Rump. Ten methods to bound multiple roots of polynomials. J. Comput. Appl. Math. (JCAM), 156:403-432, 2003.
[8] S.M. Rump and S. Graillat. Verified error bounds for multiple roots of systems of nonlinear equations. accepted for publication, 2009.

