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Abstract—We study the Hopf bifurcation of the nontriv- 2. Hopf Bifurcation of the Nontrivial Equilibria
ial equilibria and its degeneracies in Chua’s equation. The , _ S
existence of cusp bifurcations of periodic orbits is praved Due to theZ,-symmetry Chua’s equation exhibits, it is

Numerical continuation results are in perfect agreemefough to analyse the Hopf bifurcation of one of the two
with theoretical ones. nontrivial equilibria, namely %o, Yo, Z)). The non-trivial

equilibria exist when the condition

1. Introduction ( v
a

—c)>0
B+y

Chua’s equation models one of the simplest electronic
circuits that exhibits a wide range of complex dynamicais fulfilled.
behaviors. Let us consider the case of a cubic nonlinearity, By means of the change= u+xo, y = V+Yo, Z = W+Z,
whose equations are derived in [1]: the nontrivial equilibrium is translated to the origin, and
system (1) is transformed into

X = a(y-ax -cx,
- X-y+z @) U = (20c-32)u+av-3x0al? - anls,
. Vo= u-v+w (2)
7 = —py- g
BY -7z, W o= BV w

witha = £1,a # 0,8 # 0 andy,c € R. Note that for
a = 0 system (1) is linear and # = 0 it is uncoupled. In
this system a parameteris included in order to take into

The characteristic polynomial of the linearization matrix
at the nontrivial equilibria i€(1) = A3 + p1A% + pad + p3

account small resistiveffiects in the inductance. with
System (1) isZ,-symmetric, that is, it is invariant with 3wy
respect to the changef,z2 — (-x-y,-2). Thus, o= B+y +(1+y) - 2ac,

3ry(1+y) (3
B+y

the origin is always an equilibrium point. Moreover, for
a(y/(B + y) — ¢) > 0 two nontrivial equilibria exist at
(X0, X + Cxo, &% + (C — 1)Xo), with @x = y/(B + ) - C. ps = 2a[cB+y)-v].
Generically, on surface(8 + y) = y a pitchfork bifurcation
of equilibria occurs.

The analysis of the pitchfork bifurcation for Chua'’s
equation is performed in [2]. In this work, authors alsq
consider Takens-Bogdanov bifurcation of the origin and its
nonlinear degeneracies when paramegter 0. The case [2ac(1 +7) + Bo]?
v # 0 has been studied in [3], where the triple-zero bi- 1 2 _
furcation is also examined. The theoretical analysis of the 4 [ao —AL B+ 7)] =0,

p2 = B+y—a-2ac(l+vy)+

The Hopf bifurcation is obtained fqu; = p,p1 wherep; #
0, P2 > 0.
The nontrivial equilibria undergo a Hopf bifurcation

Hopf-pitchfork bifurcation as well as its nonlinear degen- =] 3ay
eracies can be found in [4]. B+y (1+7)-2ac#0,
To complete the study of all the local bifurcations exhib- 3ay(1+7)
ited by system (1) we consider here the Hopf bifurcation of B+y—a—-2ac(l+y)+ ——= >0,
the nontrivial equilibria and its degeneracies when 0. B+y

The casey = 0 has been recently considered in [5]. Theyhere
presence of cusps of saddle-node bifurcations of periodic

2
orbits is proved by our analysis and thus, the coexistence of Bo = - 3ay(1+7) L2 1+7) ,
three-periodic orbits and hysteretic phenomena are guaran B+y 2
teed. @ = (L+a-7y?)"+4y(1+7)>
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Let us denote, for the sake of simplicify= 8 + y. For  anday; a polynomial (with tenth degree'mg provided that
a # 0andp; # (1+ 2y) Egs. (3) define explicitly, 8, cas  y+ 4n # 0) whose cofficients are polynomials ip andan,

functions ofpy, p2, ps since omitted for the sake of brevity. The azymutal @odents
b, andb, are not involved in the study of this bifurcation.
6 & & 3 1 2 . . y A
% = ZQ(% - 2aC - y) The analysis of the stability and the degeneracies of the
a? 9

Hopf bifurcation of the nontrivial equilibria reduces taeth
—2a[(1 +2y) - pa] # 0. study of the signs and zeroes of @bgentsa; anda, ob-
Denotingp; = -1y, taking into account thap;p, = p3  tained in Eq. (4).
andp; = wé > 0 and solving Egs. (3) faz, 3, ¢, the Hopf Achieving this study we get the following result [7].
manifold of the nontrivial equilibria reads Theorem Fixedy > 0, Chua’s equation undergoes a
Hopf bifurcation of the nontrivial equilibria fora( 3, ) €

@A+ y+ )+ Wl h. Two different degenerate cases appear.

1+2y+4n i) If a = +1, there are two unbounded curves of degenera-
(r+ ’lh)wg Y@+ M)A +y +n) cies of codimension two. The first one emerges from the

b}

B:

>
I

1+2y+an ’ codimension-three point c
3y Leyids point{s1p, BTe1D, CTB1D)
2 2'5 2a ’ aTB1D = — (1 i 7)3
(1)0>0, /lh?ﬁo Zy_ [1+2,y+572’
Observe that ifty = —1 — 2y and ., ¢) € h theny = —1. _ 2y(1+y)
X . BreiD = -
In order to analyse the possible degeneracies of the Hopf (1+3y) - V1+2y+572
bifurcation we consider system (2) with parameters evalu- (1+3y) - VI+2y+572
ated at their critical values and perform the linear transfo CtB1D = 21+ )2 ,

mation given by the matrix
woll+7)  (1+7) 2, 2 (where a degenerate Takens-Bogdanov bifurcation of ho-
0 0 Y LG moclinic type exists) and tends to a point at infinity in the
ooy + 1) — (ni/l - zni ) ’ space of parameters, and it exists for> 0, 3 > 0 and
oty 4 ARG Y 0 ¢ < 1. The second one starts from the codimension three
wheren; =1+ Y+ Apandn, = 1+ 2y + /lh_. o _point (@HPD, BHPD, CHPD)
Thus we obtain a new system whose linearization matrix

's in canonical form (aHPD. BHPD, CHPD) = (—(1 +7)%.9%, )
0 -wo O 1+y
wo 0 0| (where a degenerate Hopf-pitchfork bifurcation occurs)
0 0 and tends to a point at infinity, and it exists fer< 0,

Using the recursive algorithm given in [6], the fifth-order8 > 0 andc < 1.

normal form for the reduced system on the center manifold If @ = -1, there are two curves of degeneracies of codi-
in polar coordinates is mension two. One of them is bounded and the other one

is unbounded. The first curve joins the codimension-three

o= ard+anr®, X
. t
— wo+byr? 4 brt, points @1e2p, 182D, CTB2D)
1+7v)®
where 3 atezn = (1 )’2) =1
v+ 1+2y+
a = 3a2XS(1 + 'y)s [,ﬁ —+ a)g] ail IB 27(1 + ,y)2
- ’ TB2D = =%
2hw5(A5 + Awp)(dy +wodiz @) (1+3y)+ VIt 2y 152
3ahxd(L+7)° [ + wh| an . (1+3y) + V1+2y+ 52
ay = . TB2D = >
? 7 283083 (2 + w312 + 9R) (2 + 4w?)3 2(1+9)
with (where a degenerate Takens-Bogdanov bifurcation of ho-
_ 3 B2 moclinic type exists) andaypp, SHPD, CHPD) and it exists
= 10(7; An)(wo)” + [(12y = 5), - fora < 0,8 > 0and 0< ¢ < 3/2. In addition, a
+(12y° = 11y - 6)An — 10y(y + 1))(wyp) codimension-three point appears on the quoted curve (this
+[442 + 5(5y + 2)Ap + (58y* + 56y + )43 new degeneracy leads to the presence of cusps of saddle-
+(y + 1)(73y% + 43y + 3)2 node bifurcations of periodic orbits). The second curve
y(46y + 13)(y + 120 + 10y2(y + 1)3](0(2) J;r;r&sc t;Ni) points at infinity and it exists far < 0,8 < 0
+y A (y + D + v + VA7 We note that the Hopf bifurcations of the origin and its
+(3y + DA + y(y + 1)], degeneracies in Chua’s equation are also considered in [7].
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In Fig. 1 we present a qualitative partial bifurcation
set fora = —1.085. We observe that a point of Takens-
Bogdanov bifurcation of the origiiB2 exists on the curve
where the pitchfork bifurcation of the origiRl occurs.
This locusPl is given by

Cc= Y .
B+y

From the codimension-two poifiB2 four curves emerge:
Ho, corresponding to a subcritical Hopf bifurcation of the
origin (where a symmetric periodic orbit is borf)p, a
curve where the nontrivial equilibria undergo a supercrit-
ical Hopf bifurcation (and then a pair of asymmetric pe-
riodic orbits is born);H, a curve of homoclinic connec-
tions of the origin andBN2 corresponding to saddle-node
bifurcations of symmetric periodic orbits. The homoclinic

B2 — Pl connectiorH that emerged attractive froifB2 changes to
SN3 repulsive when it crosses the degeneration pgdita (this
"Hod degeneracy occurs whér= |p/A| = 1, where p+iw, 2) are
Ho the eigenvalues of the origin). Consequently, two saddle-

node curves emerge fromd2a entering in the repulsive
homoclinic region, one of symmetric periodic orbif\1,

and the other of asymmetric periodic orb#s2 This last
curve collapses in a cuspy, with the saddle-node curve of
asymmetric periodic orbitgnl, emerged from the degen-
eration on the Hopf bifurcation of the nontrivial equiliayi
hod. Moreover, the saddle-node curves of symmetric pe-
riodic orbits, SN2 and SN3 (emerged from the degenera-

In this section we take advantage of the analytical resulfn on the Hopf bifurcation of the origirtiod), collapse
obtained above. In our numerical study of Chua’s equatioff & cusp of saddle-node of symmetric periodic orhits.
(1), performed basically with AUTO [8], we will takg, ¢~ The curvéSN1ends atanew codimension-two poirtlif,
anda as bifurcation parameters and we will fix the othePlaced onH, which corresponds to a degeneration in the
two, namelya = -1, y = 0.3 > 0, in accordance with holmocllmc connection known ajsclm_atlon-fllpor_crltlcal
the previous papers [3, 4] that the present work compléwist [9]. In Fig. 2 we show a detail of the region where
ments in certain aspects. For the valuesandy fixed, & codimension-two poingu (cusp of asymmetric periodic
a degenerate Takens-Bogdanov bifurcation of homoclinRits) appears.

type TB2D takes place at the critical valuesv —1.08132, To analyze these new codimension-two bifurcations we
B~ 0.00434 anct ~ 0.98573. continue, in thed;, 3, c)-parameter space, the codimension-

two curves. In this way, the projection of such curves onto
the (, ¢) plane is shown in Fig. 3.

Figure 1: Qualitative partial bifurcation set fer= —1.085,
v =0.3anda=-1.

3. Numerical Results

0.98905 ‘ ‘ From the codimension-three poiiiB2D, that corre-
HN sponds to a degenerate Takens-Bogdanov bifurcation of ho-
cu SN1 moclinic type [10], four curves of codimension-two bifur-

cations emanate: a degenerate Hopf bifurcation of the ori-
gin Hod, a degenerate Hopf bifurcation of the nontrivial
€ 0.98900 ] equilibria hod (studied in Sec. 2), a cusp of saddle-node
bifurcations of periodic orbit€CU and a degenerate ho-
moclinic connectiorHd2a. The curvehod ends outside
the range of the parameters shown in Fig. 3, at the point
SHZ\snl HPD (¢ = -1.69,8 = 0.09,c ~ 0.76923) where a de-
0.98895 : generate Hopf-pitchfork bifurcation of the origin occurs.
0.004489 0.004490 0.004491 This codimension-three bifurcation was analyzed in [4].
B Also in Fig. 3 the codimension-three poifihoD (where
a second-order degeneracy of the Hopf bifurcation of the
Figure 2: Zoom of Fig. 1 in a neighborhood of the cusmontrivial equilibria occurs) appears on the cuhg, for
pointcu. a ~ —1.08202,8 ~ 0.00436 anct = 0.98768. From such
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