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Abstract—We study the Hopf bifurcation of the nontriv-
ial equilibria and its degeneracies in Chua’s equation. The
existence of cusp bifurcations of periodic orbits is proved.
Numerical continuation results are in perfect agreement
with theoretical ones.

1. Introduction

Chua’s equation models one of the simplest electronic
circuits that exhibits a wide range of complex dynamical
behaviors. Let us consider the case of a cubic nonlinearity,
whose equations are derived in [1]:

ẋ = α(y− ax3
− cx),

ẏ = x− y+ z, (1)

ż = −βy− γz,

with a = ±1, α , 0, β , 0 andγ, c ∈ R. Note that for
α = 0 system (1) is linear and ifβ = 0 it is uncoupled. In
this system a parameterγ is included in order to take into
account small resistive effects in the inductance.

System (1) isZ2-symmetric, that is, it is invariant with
respect to the change (x, y, z) → (−x,−y,−z). Thus,
the origin is always an equilibrium point. Moreover, for
a(γ/(β + γ) − c) > 0 two nontrivial equilibria exist at
(x0, ax3

0 + cx0, ax3
0 + (c − 1)x0), with ax2

0 = γ/(β + γ) − c.
Generically, on surfacec(β+ γ) = γ a pitchfork bifurcation
of equilibria occurs.

The analysis of the pitchfork bifurcation for Chua’s
equation is performed in [2]. In this work, authors also
consider Takens-Bogdanov bifurcation of the origin and its
nonlinear degeneracies when parameterγ = 0. The case
γ , 0 has been studied in [3], where the triple-zero bi-
furcation is also examined. The theoretical analysis of the
Hopf-pitchfork bifurcation as well as its nonlinear degen-
eracies can be found in [4].

To complete the study of all the local bifurcations exhib-
ited by system (1) we consider here the Hopf bifurcation of
the nontrivial equilibria and its degeneracies whenγ > 0.
The caseγ = 0 has been recently considered in [5]. The
presence of cusps of saddle-node bifurcations of periodic
orbits is proved by our analysis and thus, the coexistence of
three-periodic orbits and hysteretic phenomena are guaran-
teed.

2. Hopf Bifurcation of the Nontrivial Equilibria

Due to theZ2-symmetry Chua’s equation exhibits, it is
enough to analyse the Hopf bifurcation of one of the two
nontrivial equilibria, namely (x0, y0, z0). The non-trivial
equilibria exist when the condition

a

(

γ

β + γ
− c

)

> 0

is fulfilled.
By means of the changex = u+x0, y = v+y0, z= w+z0,

the nontrivial equilibrium is translated to the origin, and
system (1) is transformed into

u̇ =
(

2αc− 3αγ
β+γ

)

u+ αv− 3x0αau2 − aαu3,

v̇ = u− v+ w,
ẇ = −βv− γw.

(2)

The characteristic polynomial of the linearization matrix
at the nontrivial equilibria isP(λ) = λ3 + p1λ

2 + p2λ + p3

with

p1 =
3αγ
β + γ

+ (1+ γ) − 2αc,

p2 = β + γ − α − 2αc(1+ γ) +
3αγ(1+ γ)
β + γ

,

p3 = 2α
[

c(β + γ) − γ
]

.

(3)

The Hopf bifurcation is obtained forp3 = p2p1 wherep1 ,

0, p2 > 0.
The nontrivial equilibria undergo a Hopf bifurcation

when

h ≡


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




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







[

2αc(1+ γ) + β0
]2

−
1
4

[

α0 − 4(1+ γ)2(β + γ)
]

= 0,

3αγ
β + γ

+ (1+ γ) − 2αc , 0,

β + γ − α − 2αc(1+ γ) +
3αγ(1+ γ)
β + γ

> 0,

where

β0 = −
3αγ(1+ γ)
β + γ

+
α − (1+ γ)2

2
,

α0 = (1+ α − γ2)2 + 4γ(1+ γ)2.
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Let us denote, for the sake of simplicity,β̃ = β + γ. For
α , 0 andp1 , (1+ 2γ) Eqs. (3) define explicitlyα, β̃, c as
functions ofp1, p2, p3 since

∂(p1, p2, p3)

∂(α, β̃, c)
= 2α

(

3αγ

β̃
− 2αc− γ

)

= −2α[(1 + 2γ) − p1] , 0.

Denotingp1 = −λh, taking into account thatp1p2 = p3

andp2 = ω
2
0 > 0 and solving Eqs. (3) forα, β̃, c, the Hopf

manifold of the nontrivial equilibria reads

h ≡


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











α = −
(1+ γ)[(1 + γ + λh)2 + w2

0]

1+ 2γ + λh
,

β̃ =
(γ + λh)w2

0 + γ(1+ γ)(1+ γ + λh)

1+ 2γ + λh
,

c =
3γ

2β̃
+

1+ γ + λh

2α
,

ω2
0 > 0, λh , 0.

Observe that ifλh = −1− 2γ and (α, β, c) ∈ h thenγ = −1.
In order to analyse the possible degeneracies of the Hopf

bifurcation we consider system (2) with parameters evalu-
ated at their critical values and perform the linear transfor-
mation given by the matrix





















ω0(1+ γ) (1+ γ)η1 η2
1 + ω

2
0

0 η2 η2

ω0(γ + λh) −γ(γ + λh) −(γ2 + ω2
0)





















,

whereη1 = 1+ γ + λh andη2 = 1+ 2γ + λh.
Thus we obtain a new system whose linearization matrix

is in canonical form




















0 −ω0 0
ω0 0 0
0 0 λh





















.

Using the recursive algorithm given in [6], the fifth-order
normal form for the reduced system on the center manifold
in polar coordinates is

ṙ = a1r3 + a2r5,

θ̇ = ω0 + b1r2 + b2r4,

where

a1 =
3a2x2

0(1+ γ)5
[

η2
1 + ω

2
0

]3
a11

2λhω
2
0(λ2

h + 4ω2
0)(λ2

h + ω
2
0)η4

2

,

a2 =
3a4x4

0(1+ γ)9
[

η2
1 + ω

2
0

]6
a21

2λ3
hω

6
0η

8
2(λ2

h + ω
2
0)3(λ2

h + 9ω2
0)(λ2

h + 4ω2
0)3
,

(4)

with

a11 = −10(γ + λh)(ω2
0)3 + [(12γ − 5)λ2

h

+(12γ2 − 11γ − 6)λh − 10γ(γ + 1)](ω2
0)

2

+[4λ5
h + 5(5γ + 2)λ4

h + (58γ2 + 56γ + 9)λ3
h

+(γ + 1)(73γ2 + 43γ + 3)λ2
h

+γ(46γ + 13)(γ + 1)2λh + 10γ2(γ + 1)3]ω2
0

+γλ2
h(γ + 1)(λh + γ + 1)[λ2

h

+(3γ + 1)λh + γ(γ + 1)],

anda21 a polynomial (with tenth degree inω2
0 provided that

γ+λh , 0) whose coefficients are polynomials inγ andλh,
omitted for the sake of brevity. The azymutal coefficients
b1 andb2 are not involved in the study of this bifurcation.

The analysis of the stability and the degeneracies of the
Hopf bifurcation of the nontrivial equilibria reduces to the
study of the signs and zeroes of coefficientsa1 anda2 ob-
tained in Eq. (4).

Achieving this study we get the following result [7].
Theorem. Fixed γ > 0, Chua’s equation undergoes a

Hopf bifurcation of the nontrivial equilibria for (α, β, c) ∈
h. Two different degenerate cases appear.
i) If a = +1, there are two unbounded curves of degenera-
cies of codimension two. The first one emerges from the
codimension-three point (αTB1D, βTB1D, cTB1D)
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

αTB1D = −
(1+ γ)3

2γ −
√

1+ 2γ + 5γ2
,

βTB1D =
2γ(1+ γ)2

(1+ 3γ) −
√

1+ 2γ + 5γ2
− γ,

cTB1D =
(1+ 3γ) −

√

1+ 2γ + 5γ2

2(1+ γ)2
,

(where a degenerate Takens-Bogdanov bifurcation of ho-
moclinic type exists) and tends to a point at infinity in the
space of parameters, and it exists forα > 0, β > 0 and
c < 1. The second one starts from the codimension three
point (αHPD, βHPD, cHPD)

(αHPD, βHPD, cHPD) =

(

−(1+ γ)2, γ2,
1

1+ γ

)

,

(where a degenerate Hopf-pitchfork bifurcation occurs)
and tends to a point at infinity, and it exists forα < 0,
β > 0 andc < 1.
ii) If a = −1, there are two curves of degeneracies of codi-
mension two. One of them is bounded and the other one
is unbounded. The first curve joins the codimension-three
points (αTB2D, βTB2D, cTB2D)
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αTB2D = −
(1+ γ)3

2γ +
√

1+ 2γ + 5γ2
,

βTB2D =
2γ(1+ γ)2

(1+ 3γ) +
√

1+ 2γ + 5γ2
− γ,

cTB2D =
(1+ 3γ) +

√

1+ 2γ + 5γ2

2(1+ γ)2
,

(where a degenerate Takens-Bogdanov bifurcation of ho-
moclinic type exists) and (αHPD, βHPD, cHPD) and it exists
for α < 0, β > 0 and 0 < c < 3/2. In addition, a
codimension-three point appears on the quoted curve (this
new degeneracy leads to the presence of cusps of saddle-
node bifurcations of periodic orbits). The second curve
joins two points at infinity and it exists forα < 0, β < 0
andc > 1.

We note that the Hopf bifurcations of the origin and its
degeneracies in Chua’s equation are also considered in [7].
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Figure 1: Qualitative partial bifurcation set forα = −1.085,
γ = 0.3 anda = −1.

3. Numerical Results

In this section we take advantage of the analytical results
obtained above. In our numerical study of Chua’s equation
(1), performed basically with AUTO [8], we will takeβ, c
andα as bifurcation parameters and we will fix the other
two, namelya = −1, γ = 0.3 > 0, in accordance with
the previous papers [3, 4] that the present work comple-
ments in certain aspects. For the values ofa andγ fixed,
a degenerate Takens-Bogdanov bifurcation of homoclinic
typeTB2D takes place at the critical valuesα ≈ −1.08132,
β ≈ 0.00434 andc ≈ 0.98573.

0.004489 0.004490 0.004491
β

0.98895

0.98900

0.98905

c

SN1

H

sn2 sn1

cu

Figure 2: Zoom of Fig. 1 in a neighborhood of the cusp
pointcu.

In Fig. 1 we present a qualitative partial bifurcation
set forα = −1.085. We observe that a point of Takens-
Bogdanov bifurcation of the originTB2 exists on the curve
where the pitchfork bifurcation of the originPI occurs.
This locusPI is given by

c =
γ

β + γ
.

From the codimension-two pointTB2 four curves emerge:
Ho, corresponding to a subcritical Hopf bifurcation of the
origin (where a symmetric periodic orbit is born);ho, a
curve where the nontrivial equilibria undergo a supercrit-
ical Hopf bifurcation (and then a pair of asymmetric pe-
riodic orbits is born);H, a curve of homoclinic connec-
tions of the origin andSN2 corresponding to saddle-node
bifurcations of symmetric periodic orbits. The homoclinic
connectionH that emerged attractive fromTB2 changes to
repulsive when it crosses the degeneration pointHd2a (this
degeneracy occurs whenδ = |ρ/λ| = 1, where (ρ±iω, λ) are
the eigenvalues of the origin). Consequently, two saddle-
node curves emerge fromHd2a entering in the repulsive
homoclinic region, one of symmetric periodic orbits,SN1,
and the other of asymmetric periodic orbits,sn2. This last
curve collapses in a cusp,cu, with the saddle-node curve of
asymmetric periodic orbits,sn1, emerged from the degen-
eration on the Hopf bifurcation of the nontrivial equilibria,
hod. Moreover, the saddle-node curves of symmetric pe-
riodic orbits,SN2 andSN3 (emerged from the degenera-
tion on the Hopf bifurcation of the origin,Hod), collapse
in a cusp of saddle-node of symmetric periodic orbitsCU.
The curveSN1ends at a new codimension-two point,Hdif ,
placed onH, which corresponds to a degeneration in the
homoclinic connection known asinclination-flipor critical
twist [9]. In Fig. 2 we show a detail of the region where
a codimension-two point,cu (cusp of asymmetric periodic
orbits) appears.

To analyze these new codimension-two bifurcations we
continue, in the (α, β, c)-parameter space, the codimension-
two curves. In this way, the projection of such curves onto
the (α, c) plane is shown in Fig. 3.

From the codimension-three pointTB2D, that corre-
sponds to a degenerate Takens-Bogdanov bifurcation of ho-
moclinic type [10], four curves of codimension-two bifur-
cations emanate: a degenerate Hopf bifurcation of the ori-
gin Hod, a degenerate Hopf bifurcation of the nontrivial
equilibria hod (studied in Sec. 2), a cusp of saddle-node
bifurcations of periodic orbitsCU and a degenerate ho-
moclinic connectionHd2a. The curvehod ends outside
the range of the parameters shown in Fig. 3, at the point
HPD (α = −1.69, β = 0.09, c ≈ 0.76923) where a de-
generate Hopf-pitchfork bifurcation of the origin occurs.
This codimension-three bifurcation was analyzed in [4].
Also in Fig. 3 the codimension-three pointThoD (where
a second-order degeneracy of the Hopf bifurcation of the
nontrivial equilibria occurs) appears on the curvehod, for
α ≈ −1.08202,β ≈ 0.00436 andc ≈ 0.98768. From such
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Figure 3: A partial bifurcation set in a neighborhood of the
degenerate Takens-Bogdanov pointTB2D, for γ = 0.3 and
a = −1.

a point the curvecu, that ends in other three-codimension
point THD2, emerges. This last point, forα ≈ −1.0875,
β ≈ 0.00457 andc ≈ 0.9909, corresponds to a degen-
erate homoclinic connection verifying simultaneously that
δ = 1 (the origin is resonant) and ¯a = 1, beingā the coef-
ficient of the Poincaré next return map:x→ ε + ā|x|δ. The
cases ¯a > 1 andā < 1 have been studied in [11] and the
codimension-three degeneracy in [12]. These results agree
with the analytical ones obtained in Sec. 2 for the case
a = −1.

4. Conclusion

In this paper we have considered the Hopf bifurcation
of the nontrivial equilibria in Chua’s equation. We have
proved that a codimension-three degeneracy appears, that
is, a cusp of saddle-node bifurcations of periodic orbits that
can give rise to hysteretic phenomena. Numerical results
presented are in perfect agreement with the analytical ones
obtained.
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