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Abstract—Recent investigations of ordinal partition
networks show potential for the method as a tool for
analysing nonlinear time series from continuous systems.
In this paper we demonstrate how interpolation can be
used to minimise node aliasing such that ordinal partition
networks more accurately capture dynamics from discrete
time sampled data. We then show how the transitional com-
plexity of a time series can be quantified using a weighted
average of node entropy and investigate this measure as ap-
plied to the Rössler system.

1. Introduction

Various methods for the analysis of dynamical systems
from time series using complex networks have garnered at-
tention in recent years [1]. One of the latest concepts to
emerge is that of ordinal partition networks, as first pro-
posed in [2] and subsequently generalised in [3]. This
method is an extension of the symbolic mapping process
used in permutation entropy [4, 5] and is of notable poten-
tial for several reasons. Firstly, it has been shown that the
existence of different ordinal patterns in time series from a
specific system is a property directly related to the dynam-
ics of that system [6]. Ordinal patterns are also relatively
robust to noise yet still able to capture small scale ampli-
tude differences, unlike coarse graining methods. A recent
investigation of ordinal partition networks has shown that
ordinal patterns can be interpreted as a partition of the em-
bedding phase space and hence, that the networks are a
Markov model of the underlying dynamics of a time se-
ries [3]. This same study also demonstrated that simple
measures on these networks, such as mean node degree and
node degree variance, can track dynamical changes in con-
tinuous systems, both simulated and experimental.

The purpose of this paper is twofold. Firstly, we discuss
the use of interpolation to reduce node aliasing in ordinal
partition networks (Section 2.2). Secondly we introduce
the concept of node entropy [7, 8] as applied to these net-
works (Section 2.3), where it becomes an intuitive mea-
sure of time series complexity and, as will be shown, pro-
vides effective tracking of dynamical change in a continu-
ous Rössler system (Section 3).

2. Method

2.1. The Ordinal Partition Network Algorithm

As defined in [3], the time series x = {x1, x2, x3, ..., xn} is
embedded with lag τ and dimension D to form the sequence
of state vectors vt = (xt, xt+τ, xt+2τ, ...xt+(D−1)τ). Each state
vector is then mapped to a symbol — an ordinal partition
element si = (π1, π2, ..., πD) where π j ∈ {1, 2, ...,D} and
π j , πk ⇐⇒ j , k such that π j < πk ⇐⇒ x j >
xk ∀x j, xk ∈ vt. If x j = xk then rank is assigned based
on order of appearance in vt. Each unique si is mapped
to a node in the network represented by adjacency ma-
trix A. Weighted and directed edges are allocated between
nodes based on temporal succession in the symbolic se-
quence S = {s1

i , s
2
i , s

3
i , ..., s

(n−D+1)
i } that corresponds to the

sequence of state vectors v = {v1, v2, v3, ..., v(n−D+1)}. The
edge weight ai, j equals the number of times that the pair
{sn

i , s
n+1
j } occurs in S .

With regards to parameter selection, the embedding lag
τ should be selected to optimise the embedding using, for
example, the autocorrelation method, mutual information
or similar. The embedding dimension D should be selected
large enough to eliminate or, in a practical sense, to min-
imise the occurrence of degeneracies in the network. We
define a degeneracy in an ordinal partition network to be a
pair of state vectors {v j, vk} corresponding to two indepen-
dent segments of trajectory (i.e. not close in time) that are
mapped to the same symbol by virtue of a non-ideal par-
tition. Degeneracies manifest as shortcuts in the network
between states that are not be close with respect to the dy-
namics of the underlying system and, hence, corrupt the
model. Presently there is no explicit algorithm for deter-
mining an optimal D, however, a suitable value can usually
be selected based on visual inspection of a plot of an ap-
propriate network statistic over a sufficiently large range of
range of D.

2.2. Node Aliasing

Consider the trivial case of a noiseless periodic time se-
ries x that is sampled at a frequency ω , bω0,∀b ∈ N
where ω0 is the fundamental frequency of oscillation of x.
The possibility then arises that for the temporally adjacent
pair of embedded state vectors {v j, v j+1},∃vk such that vk
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is an intermediate point on the trajectory between v j and
v j+1. Depending on the sampling rate, the choice of em-
bedding parameters and the particular nature of the trajec-
tory in question, several connectivity scenarios can occur
in the network that do not reflect the true behaviour of the
underlying dynamical system. For example, if v j → s1,
v j+1 → s3 we already know that there will be a directed
edge for {s1, s3}. Consider also vk → s2, and vk−1 suf-
ficiently close to v j such that vk−1 → s1. The resulting
subgraph {s1, s2, s3} ⊂ A is then:

( s1 s2 s3

s1 0 1 1
s2 0 0 0

)
which implies that, from the perspective of node s1, nodes
s2 and s3 appear to be indistinguishable as destinations
states , hence we call this phenomenon node aliasing. This
kind of transitional uncertainty cannot occur in a strictly
periodic system, for which we would instead expect the fol-
lowing subgraph:

( s1 s2 s3

s1 0 1 0
s2 0 0 1

)
It is therefore necessary to select a sufficiently high sam-

ple rate with respect to the data, but also with respect to the
embedding dimension D, because that parameter governs
the effective size of each ordinal partition in the embed-
ding phase space [3]. In practice sampling rates are lim-
ited, however, it should be possible to minimise aliasing if
we assume a smooth trajectory between sampled points and
interpolate the data to a sufficiently high resolution. Fig-
ure 1 shows networks generated using a discrete sampled
time series from a period-3 Rössler system using both the
original data, where significant evidence of node aliasing
is clearly observable in the network (Figures 1(a) and (c)),
and interpolated data, for which node aliasing has been al-
most completely eliminated (Figures 1(b) and (d)).

In the chaotic case, node aliasing causes the network to
collapse on itself (Figure 2(b)). After interpolation, the
time series maps to a network that is far more intuitive from
a qualitative perspective, and for which it is possible to ob-
serve subgraphs that correspond to the stretching and fold-
ing regions of the attractor (Figure 2(c)).

2.3. Weighted Average Node Entropy

We define node entropy as in [7]. First we compute
the stochastic matrix P with entries pi, j estimated from the
weighted adjacency matrix A:

pi, j =
ai, j∑

k∈N(i)
ai,k

, (1)

where N(i) denotes the set of out-connected neighbours of
node si. The node entropy of si is the Shannon entropy with

(a) (b)

(c) (d)

Figure 1: (a) The ordinal partition network generated from the
x-component of a period-3 Rössler system originally sampled at
intervals of 0.2 and (b) as generated from the same time series
that has been interpolated using a cubic spline with 200 evenly
space points for each original datum. Subfigures (c) and (d) show
magnified portions of the network structures of (a) and (b) respec-
tively. The embedding lag is τ = 8 for (a) and (c), and τ = 1600
for (b) and (d). The embedding dimension is D = 14 in each case.

(a)
(b)

(c)

Figure 2: (a) A chaotic Rössler attractor and corresponding or-
dinal partition networks generated from the x-component of the
system (b) as originally sampled at intervals of 0.2, and (c) in-
terpolated using a cubic spline with 200 evenly space points for
each original datum. The embdedding lag is τ = 8 for (b), and
τ = 1600 for (c). The embedding dimension for both (b) and (c)
is D = 14.

respect to the i-th row of P given by:

µi = −
1

log2 kout
i

∑
j∈N(i)

pi, j log2 pi, j . (2)
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We use the base 2 logarithm and therefore µi is the average
amount of information generated by si in bits. Note that a
normalisation factor of 1/ log2 kout

i is applied, where kout
i is

the out-degree of si, such that 0 ≤ µi ≤ 1. If the network
contains a node with kout

i = 0 we assign node entropy µi =

0. Strictly speaking, node entropy is undefined for kout
i = 0,

however, ordinal partition networks can have at most one
such node, s(n−D+1)

i , being the final node in the symbolic
sequence.

We then take a weighted average over the network us-
ing the same principle as in [8], that is to weight each µi

by the corresponding probability of si from the stationary
distribution, which we estimate from A:

µ̄W =
∑

i

µi

∑
j

ai, j∑
k, j

ak, j
. (3)

Therefore, weighted average node entropy measures the
dynamical complexity of the partitioned time series or,
alternatively, describes the expected value of transitional
complexity on the reconstructed attractor. By contrast, per-
mutation entropy and related metrics only measure global
complexity based only the stationary distribution of the
time series and, hence, discard temporal information.

3. Results and Discussion

We now apply the ordinal partition network method and
the weighted average node entropy metric to the Rössler
system for a range of the bifurcation parameter. Figure 3
shows convergence of µ̄W as the interpolation resolution is
increased. From this we infer the convergence of the struc-
ture of the network itself, resulting from the elimination of
node aliasing.

We then refer to a plot of µ̄W against the embedding di-
mension based on a selection of sufficiently interpolated
time series characterised by a range of periodic and chaotic
dynamics (Figure 4). Observe that the growth of µ̄W is ap-
proximately linear when D ≥ 14 for all of the time series
considered. The linear growth range indicates the elimina-
tion of the majority of degeneracies in the network, so we
select D = 14 as an appropriate parameter value for the
ensuing bifurcation analysis. Note that the period-12 time
series is the last to reach linear growth w.r.t. D. This is due
to the closeness of the trajectories in phase space which
make networks from this particular limit cycle prone to de-
generacies.

Figures 5, 6 and 7 show respectively the Rössler bifur-
cation spectrum, and the largest Lyapunov exponent λ1 and
weighted average node entropy µ̄W plotted against the bi-
furcation parameter. We observe that the complexity of
the system, as quantified by µ̄W , tracks relatively with λ1,
specifically with regards to the identification of periodic
windows. As expected, periodic behaviour is characterised
by µ̄W close to zero. Furthermore, it would be feasible to
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Figure 3: The weighted average node entropy µ̄W of ordinal parti-
tion networks for a selection of periodic and chaotic Rössler time
series (see legend) originally sampled at intervals of 0.2 and then
interpolated using a cubic spline with increasing interpolation res-
olution as specified by the parameter ε. The value 1/ε is the num-
ber of evenly spaced interpolated points generated for each orig-
inal datum. A suitable embedding lag for the original data (not
interpolated) is determined to be τ = 8 by the method of finding
the first zero of the autocorrelation of the time series. For this and
all other figures we have set the τ = nint(8/ε) so that the embed-
ding parameters remain approximately equivalent with respect to
the original sampling frequency for all ε. The embedding dimen-
sion is constant at D = 14.
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Figure 4: The mean of the weighted average node entropy µ̄W

of ordinal partition networks for 100 realisations of time series
from selected periodic and chaotic regimes of the Rössler system
(see legend) that have been interpolated using a cubic spline with
interpolation resolution ε = 5 × 10−3 (refer to Figure 3) plotted
against the embedding dimension D. Embedding lag is τ = 1600.
Error bars show the standard deviation of µ̄W .

select an entropy threshold in the range 0.1259 ≤ µ̄W ≤

0.3855 to discriminate between time series that are likely
to be periodic from those that are likely to be chaotic (refer
to the horizontal guide lines in Figure 7 corresponding to
selected values of µ̄W for which λ1 becomes positive). Fi-
nally, note the improvement in the µ̄W spectrum as a result
of interpolation.

4. Conclusions

In this paper we have defined and discussed node alias-
ing, and how this undesirable effect can be minimised
by using a sufficient degree of interpolation such that the
network structure converges to a more accurate model of
the dynamics. We have also proposed and investigated
weighted average node entropy as a natural measure of
dynamical complexity in time series, specifically with re-
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Figure 5: The bifurcation spectrum with respect to parameter α
for the Rössler system.
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Figure 6: The largest Lyapunov exponent of the Rössler sys-
tem plotted against the bifurcation parameter α, computed from
the x-component time series using the lyap k algorithm from the
TISEAN software package [9].
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Figure 7: The weighted average node entropy µ̄W of ordinal par-
tition networks from Rössler time series plotted against the bifur-
cation parameter α. The upper curve (dotted) is computed using
the original time series that is sampled at intervals of 0.2 with em-
bedding lag τ = 8 and embedding dimension D = 14. The lower
curve (solid) is computed using the same data but first interpolated
using a cubic spline with interpolation resolution ε = 5 × 10−3

(refer to Figure 3). The embdedding lag and dimension are con-
stant at τ = 1600 and D = 14. The two vertical lines denote the
values of α at which the largest Lyapunov exponent λ1 becomes
positive after the period doubling cascade (α = 0.3855) and the
period-3 window (α = 0.4105) respectively. Horizontal guides
are drawn where these vertical lines cross the entropy curve at
(α, µ̄W ) = (0.3855, 0.2778) and (0.4105, 0.1259) as examples of
possible entropy thresholds that could be used to demarcate likely
ranges for periodic and chaotic dynamics in this data.

spect to transitional complexity over the partition of a re-
constructed attractor, and demonstrated how this measure
can track changes in dynamics across the bifurcation spec-
trum of the Rössler system.

Ongoing research efforts are currently focused on deter-

mining the robustness of the method to measurement noise,
and the application of the method to experimental data from
noise affected systems.
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