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Abstract—
In this paper, numerical uniqueness and exis-

tence theorem is presented for solution of Lippmann-
Schwinger equation for sound scattering problem. A
remarkable feature of this theorem is that the sufficient
condition shown in this theorem can be evaluated by
verified numerical computations.

1. Introduction

In this paper, we are concerned with the following
scattering problem for the Helmholtz equation in the
inhomogeneous media: find u : R2 → C such that

△u(x) + κ2b(x)u(x) = 0, x ∈ R2 (1)
u = ui + us, (2)

lim
r=|x|→∞

r1/2

(
∂us

∂r
− iκus

)
= 0. (3)

Here, i =
√
−1 and κ is the wave number of the in-

cidence wave. It is well known that this problem is
given as a mathematical modeling of a two dimensional
sound scattering problem [1].

We here assume the following:

Assumption 1 The refractive index b : R2 → C is a
given smooth function and

a(x) = b(x) − 1 (4)

has a compact support such that

supp a ⊂ Bρ, Bρ = {x ∈ R2 : |x| < ρ}. (5)

Furthermore, we assume that

a ∈ Wµ,2(R2) (6)

with µ > 1.

Here, the Sobolev space Wµ,2(R2) consists of functions
w ∈ L2(R2) such that∫

R2
(1 + |ξ|2)µ|ŵ(ξ)|2dξ < ∞, (7)

where

ŵ(ξ) =
∫

R2
e−ix·ξw(x)dx, ξ ∈ R2 (8)

is the Fourier transform of w.
The incidence wave is assumed to be

ui(x) = exp (iκd · x) (9)

with a fixed d ∈ R2, |d| = 1. The incidence wave ui is
a plane wave solution of the Helmholtz equation

△u(x) + κ2u(x) = 0. (10)

The scattering wave us for this incidence wave is as-
sumed to satisfy the Sommerfeld radiation condition
(3).

It is known [1] that the problem defined by (1)-(3)
is equivalent to the Lippmann-Schwinger equation

u(x) = κ2

∫
R2

Eκ(x − y)a(y)u(y)dy + ui(x), x ∈ R2,

(11)
where Eκ(x) = (i/4)H(1)

0 (κ|x|). Here, H
(1)
0 is the Han-

kel function of the first kind of order zero. A fast solver
for this equation has been proposed and studied math-
ematically in detail by Vainikko [2]. The monograph
Saranen-Vainikko [3] has described Vainikko’s theory
in detail with its mathematical background. Accord-
ing to [2] and [3], first, we somewhat simplify and gen-
eralize (11). If we scale the independent variables x
and y by x̃ = κx and ỹ = κy, respectively, without
loss of generality, we can assume that κ = 1. Fur-
ther, instead of ui, which is a solution of homogenized
Helmholtz equation with b(x) = 1 for all x ∈ R2, we
considier a general function f . We assume the follow-
ing:

Assumption 2 f ∈ Wµ,2
loc (R2), µ > 1.

Let us recall that a ∈ Wµ,2(R2) with supp a ⊂ Bρ =
{x ∈ R2 : |x| 5 ρ}. Then, the problem can be for-
mulated as: find u ∈ C(Bρ) satisfying the following
equation

u(x) =
∫

Bρ

E1(x−y)a(y)u(y)dy+f(x), x ∈ Bρ. (12)
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By the Sobolev embedding theorem, Wµ,2
loc ⊂ C(R2) for

µ > 1. Multiplying both sides of (12) by a(x), we can
rewrite the equation with respect to v(x) = a(x)u(x)
as an unknown function:

v(x) = a(x)
∫

Bρ

E1(x − y)v(y)dy + a(x)f(x), x ∈ Bρ.

(13)
A crucial observation is that, for x ∈ Bρ, only the
values from B2ρ of E1(x) are involved in the integral,
i.e., changing E1 outside this ball, the solution v(x)
does not change in Bρ. We exploit this observation
and redefine the kernel E1 in GR\BR where

GR = {x = (x1, x2) ∈ R2 : |x1| < R, |x2| < R}

is an open box and R > 2ρ is a parameter. Namely,
we define

K(x) =

{
E1(x) =

i
4
H

(1)
0 (|x|), |x| 5 R

0, x ∈ GR\BR

(14)

After that we extend K, a, af and v from GR to R2 as
2R-periodic functions with respect to x1 and x2. Thus,
we have arrived at the biperiodic integral equation

v(x) = a(x)
∫

GR

K(x − y)v(y)dy + a(x)f(x), (15)

which is equivalent to (12).
The main theorem in [2] and [3] is the following:

Theorem 1 (Vainikko) Assume that functions a
and f satisfies Assumptions 1, 2 mentioned above and
the homogeneous equation corresponding to (15) has in
H0 only the trivial solution. Then (15) has a unique
solution v ∈ Hµ has a unique solution vN ∈ TN for
sufficiently large N , and

∥vN − v∥λ 5 cNλ−µ∥v∥µ, (0 5 λ 5 µ). (16)

In [1], the existence of a unique solution in a func-
tion space of continuous functions is proved for the
Lippmann-Schwinger equation in R3 using the unique
continuation principle.

In this paper, for the sake of simplicity, we treat the
case of µ = 3/2 and present Theorem giving a sufficient
condition of guaranteeing that the homogeneous equa-
tion corresponding to (15) has in H0 only the trivial
solution. Thus, it can be seen as an another unique-
ness theorem. A remarkable feature of this theorem
is that the sufficient condition shown in this theorem
can be evaluated by verified numerical computations.
Furthermore, if such a sufficient condition holds, it also
gives an upper bound of ∥(I−aK)−1∥L(H0) and a tight
error bound between the exact solution v and an ap-
proximate solution ṽ which is generated by computer.
As a result, this paper is to present a numerical unique-
ness and existence theorem for (15), which asserts the
existence of a unique solution around an approximate
solution computed by numerical calculation.

2. Verification Theory

To present a numerical existence theorem of (15),
we first prove several lemma.

Lemma 1 Let a ∈ Hµ and µ = 3
2 . Then,

∥aK∥
L(H0,H

3
2 )

5 c 3
2
cR∥a∥ 3

2
. (17)

Proof It is know that the following holds:

∥aKv∥ 3
2

5 c 3
2
∥a∥ 3

2
∥Kv∥ 3

2
(18)

Further, we have

∥Kv∥ 3
2

=
∥∥∥∥∫

GR

K(x − y)v(y)dy

∥∥∥∥
3
2

=
√∑

j∈Z2

j3|F̂ (j)|2

=
√∑

j∈Z2

j3|K̂(j)|2|v̂(j)|2

5
√∑

j∈Z2

c2
R|v̂(j)|2

= cR∥v∥0. (19)

Here, we have put

F (x) =
∫

GR

K(x − y)v(y)dy. (20)

Further, we have used

|K(j)| 5 cRj−
3
2 . (21)

QED

Lemma 2 Let a ∈ Hµ and µ = 3
2 . Then,

∥QN (aK)∥L(H0,TN ) 5 c 3
2
cR∥a∥ 3

2
. (22)

Proof

∥QN (aKv)∥0 5 ∥aKv∥ 3
2

= c 3
2
cR∥a∥ 3

2
∥v∥0 (23)

QED

Theorem 2 Let a ∈ Hµ and µ = 3
2 . Let k =

c 3
2
cR∥a∥ 3

2
and cN = c0, 3

2
N− 3

2 . If

∥(I − QNaK)−1∥L(TN ) 5 M (24)

and
cNk(1 + Mk) < 1, (25)

the operator I − aK is invertible and the following is
satisfied:

∥(I − aK)−1∥L(H0) 5 CM . (26)

Here,

CM =
1 + Mk

1 − cNk(1 + Mk)
. (27)
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From Therorem 2, it follows the following theorem:

Theorem 3 Let a ∈ Hµ and µ = 3
2 . Let ṽ ∈ TN be

an approximate solution of

(I − aK)v = af. (28)

If
∥(I − QNaK)−1∥L(TN ) 5 M (29)

and
cNk(1 + Mk) < 1 (30)

hold, then (28) has a unique solution v∗ satisfying

∥ṽ − v∗∥H0 5 CM∥(I − aK)ṽ − af∥H0 . (31)

Furthermore, v∗ ∈ H
3
2 .
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