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Abstract—We developed a discrete-time coupled neu-
ronal system that can extract image regions in a given im-
age and exhibit them in a time series. We call this func-
tion “dynamic image segmentation”, and it is performed by
synchronizing the oscillatory responses from discrete-time
neurons. In this paper, we describe how the topological
property of a fixed point in the system gives significant in-
formation on the structure of regions in a given image. We
also suggest a novel way to identify the number of image
regions without performing a segmentation process.

1. Introduction

We developed a discrete-time coupled neuronal system
for dynamic image segmentation [1]. Our system consists
of a global inhibitor and neurons arranged in a grid so that
a neuron corresponds to a pixel in an input image. Dy-
namic image segmentation is performed by the neurons’
oscillatory responses, which are formed by periodic points.
The type of a periodic point that appears in a steady state
determines the feasibility of dynamic image segmentation.
Appearance depends on parameter values, so we tuned pa-
rameter values for dynamic image segmentation based on
the results of bifurcation analysis for periodic points and a
fixed point in reduced models of our systems [2, 3].

In this paper, we describe how the topological prop-
erty of a fixed point, which corresponds to non-oscillatory
responses is unsuitable for dynamic image segmentation,
gives significant information on the structure of regions in
a given image. In concrete terms, by computing the char-
acteristic multipliers of a fixed point when it bifurcates, we
can identify the number of image regions and background
pixels. This fact is not only informative in image segmen-
tation but also interesting from the viewpoint of bifurcation
theory.

2. Dynamic Image Segmentation System

Figure 1 shows the architecture of our neuronal system
for dynamic image segmentation [1]. It consists of a global
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Figure 1: Architecture of proposed neuronal system.

inhibitor and N neurons arranged in a grid so that one cor-
responds to a pixel in an N -pixel input image.

The dynamics of the ith neuron is defined by

xi(t+ 1)= kfxi(t) + di −Wzg(z(t), θz)

+
Wx

Mi

∑
j∈Li

g(xj(t) + yj(t), θc) (1)

yi(t+ 1)= kryi(t)− αg(xi(t) + yi(t), θc) + a. (2)

t ∈ Z denotes the discrete time where Z expresses the set
of integers and di represents the direct current input with
a value set by the feature value of the ith pixel in an input
image. We used pixel values as feature values. The third
and fourth terms on the right side of Eq. (1) correspond
to suppressive input from a global inhibitor and excitatory
input from neighboring neurons, including itself. Wz and
Wx denote coupling strength; Li and Mi correspond to the
set of the ith neuron and its four neighboring ones and the
number of elements in Li. The dynamics of the global in-
hibitor is defined as

z(t+ 1) = ϕ

{
g

(
N∑

k=1

g(xk(t) + yk(t), θf ), θd

)
− z(t)

}
(3)

so that it can detect one or more firing neurons and can ex-
cite itself simultaneously. g(·, ·) in Eqs. (1)–(3) represents
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Figure 2: Scheme of dynamic image segmentation using proposed system.

the output function of a neuron or a global inhibitor and is
defined by

g(u, θ) = 1/ (1 + exp(−(u− θ)/ε)) . (4)

In Eqs. (1)–(4), kf , di, Wz , θz , Wx, θc, kr, α, a, ϕ, θf , θd,
and ε are system parameters.

Let us illustrate the behavior of our system and the
scheme of dynamic image segmentation for a binary (black
and white) image (shown in Fig. 2). Despite a discrete-time
dynamical system, neurons corresponding to white pix-
els can generate oscillatory responses formed by periodic
points. Also, each neuron corresponding to a white pixel
can be coupled with others corresponding to only white
pixels in its neighborhood, including itself. The global in-
hibitor is connected to all the neurons and suppresses their
activity levels when one or more neurons fire. This causes
synchronized responses from directly coupled neurons and
out-of-phase responses from uncoupled ones. Associating
the output value of the ith neuron with the ith pixel value
every discrete time enables the segmented images to be out-
put and exhibited in a time series. This is how our system
works as a dynamic image segmentation system.

3. Fixed Point and its Bifurcation

Let x(t) = (x1(t), y1(t), . . . , xN (t), yN (t), z(t))⊤ ∈
RS , where S = 2N + 1. ⊤ and R denote the transpose
of a vector and the set of real numbers, respectively. The
dynamics of our discrete-time dynamical system for an N -
pixel image is described as

x(t+ 1) = f(x(t)), (5)

and equivalently, its iterated map defined by

f : RS → RS ;x 7→ f(x), (6)

where the nonlinear function f = (f1, f2, . . . , fS)
⊤ is de-

scribed as

f =

kfx1+d1−Wzg(z, θz)+
Wx

M1

∑
j∈L1

g(xj+yj , θc)

kry1 − αg(x1 + y1, θc) + a
...

kfxN+dn−Wzg(z, θz)+
Wx

MN

∑
j∈LN

g(xj+yj , θc)

kryN − αg(xn + yn, θc) + a

ϕ

{
g

(
N∑

k=1

g(xk + yk, θf ), θd

)
− z

}


.

(7)

Here, we define the fixed point and its characteristic mul-
tiplier. A point x∗ ∈ RS satisfying

x∗ − f(x∗) = 0 (8)

becomes a fixed point of f . The characteristic equation of
x∗ is defined by

χ(x∗, µ) = det (µE −Df(x∗)) = 0, (9)

where E, Df(x∗), and µ ∈ C correspond to the S × S
identity matrix, the Jacobian matrix of f at x = x∗, and
one of the S characteristic multipliers for x∗; C denotes
the set of complex numbers. Note that all the elements of
Df(x∗) can be analytically computed.

The topological property of a fixed point is determined
on the basis of the arrangement of all characteristic mul-
tipliers. When one or more characteristic multiplier of a
fixed point is on the circumference of a unit circle in the
complex plane, the topological property of the fixed point
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is changed, and then its bifurcation occurs. For example,
Neimark-Sacker bifurcation occurs if one or more pairs of
complex-conjugate characteristic multipliers are on the cir-
cumference. The bifurcation types and a method to com-
pute a bifurcation point are described in Ref. [4].

Next, we introduce the previously analyzed results [2, 3]
for bifurcations of a fixed point observed in reduced models
of our system. The reduced models are based on the fact
that plural neurons in an image region can be reduced to
a neuron if we assume that the responses of neurons in an
image region are synchronized in phase. For example, our
system for an image with two image regions is simplified
as a model with a global inhibitor and two neurons with-
out excitatory coupling; we call it the two-coupled system.
Figure 3 plots the bifurcation sets of a fixed point observed
in the two- and three-coupled systems. In the analysis, the
values of the system parameters (except for kr and ϕ) were
set to kf = 0.5, d1 = d2 = 2, Wz = 15, θz = 0.5,
Wx = 15, θc = 0, α = 4, a = 0.5, θf = 15, θd = 0,
and ε = 0.1. The NS1

ℓ denotes a Neimark-Sacker bifur-
cation curve of the fixed point, where the subscript series
number ℓ was appended to distinguish between bifurca-
tion sets of the same type. The stable fixed point exists
only in the shaded parameter region and is destabilized at
the Neimark-Sacker bifurcation points. Multiple Neimark-
Sacker bifurcations occur at parameter values on the curve
NS1

1 . For example, in the two-coupled system, the num-
ber of characteristic multipliers that are outside of the unit
circle is changed from 0 to 4 when the value of kr passes
through the curve NS1

1 from the inside to the outside of the
shaded region; in the three-coupled system, its quantity is
changed from 0 to 6.

4. Experimental Results and Discussion

Let us consider the relevance between the arrangement
of characteristic multipliers of a fixed point when it bi-
furcates and the number of image regions in an input im-
age. To simplify the problem, we treated only binary (black
and white) images, shown in Figs. 4(a)–4(c). The dimen-
sion numbers in our system to segment 2 × 2, 3 × 3, and
20 × 20 images are 9, 19, and 801, respectively. Here, we
set kr = 0.88974207 and ϕ = 0.8 that correspond to a near
point at NS1

1 in Fig. 3. We also set di = 2 and dj = 0 in the
ith and jth neurons corresponding to white and black pix-
els, respectively. The values of the other parameters were
set to the values described in Sec. 3.

First, in our system for the 2 × 2 image with two white
image regions and two black pixels, we found a fixed point
x∗ = (32.096, −31.565, −1.756, 1.516, −1.756, 1.516,
32.096, −31.565, 0.222)⊤ at the parameter values; its char-
acteristic multipliers were (0.5, 0.5, −0.8, 0.964− 0.266i,
0.964 + 0.266i, 0.964 + 0.266i, 0.964 − 0.266i, −2.162,
−2.162)⊤. The numbers of characteristic multipliers in-
side and outside of a unit circle in the complex plane are
three and two, respectively. The four residual ones consist
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Figure 3: Bifurcation diagram on fixed point observed in
reduced model [2, 3].

(a) 2× 2 pixels (b) 3× 3 pixels (c) 20×20 pixels

Figure 4: Black and white images.

of two pairs of complex conjugates on the circumference of
the unit circle (i.e., those that caused the double Neimark-
Sacker bifurcations), which makes this consistent with the
analyzed results of the two-coupled system [2]. Figure 5(a)
plots the characteristic multipliers on the inside, left out-
side, and circumference of the unit circle as black, red, and
blue points, respectively. Note that some points overlap.

Second, we found a fixed point in our system for the 3×3
image with three white image regions and five black pixels,
which can be reduced to a three-coupled system. The char-
acteristic multipliers of the fixed point were (0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.694, −0.8, 0.964− 0.266i, 0.964+ 0.266i,
0.964 − 0.266i, 0.964 + 0.266i, 0.964 − 0.266i, 0.964 +
0.266i, −2.162, −2.162, −2.162, −2.162, −2.162)⊤ and
are plotted in Fig. 5(b). The numbers of characteristic mul-
tipliers on the inside, outside, and circumference of the
unit circle in the complex plane are 8, 5, and 6, respec-
tively. These three pairs of complex-conjugate character-
istic multipliers give rise to triple Neimark-Sacker bifurca-
tions, which is also consistent with the analyzed results of
the three-coupled system [3].

The results led us to the following hypotheses.

1. The number of pairs of complex-conjugate character-
istic multipliers that cause multiple Neimark-Sacker
bifurcations is equal to the number of image regions.
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2. The number of characteristic multipliers arranged on
(−∞,−1) is equal to the number of black pixels cor-
responding to background regions.

3. The other characteristic multipliers are arranged in-
side of a unit circle.

In other words, if we compute the number of pairs of
complex-conjugate characteristic multipliers that cause
multiple Neimark-Sacker bifurcations of a fixed point, we
can identify the number of image regions to be segmented
in a given image.

To test the hypotheses, we computed a fixed point and
its characteristic multipliers in our system for the 20 × 20
image with 10 white image regions and 273 black pix-
els; the characteristic multipliers are plotted in Fig. 5(c).
Results showed that the number of characteristic multipli-
ers arranged on the left outside of the unit circle was 273
and corresponded to the number of black pixels, and the
pairs of complex-conjugate characteristic multipliers was
10, which corresponded to the white image regions. This
demonstrates that our hypothesis is effective and suggests
that our method to identify the number of image regions to
be segmented in a given image is also effective.

5. Concluding Remarks

We considered the relevance between the number of im-
age regions to be segmented in a given image and the ar-
rangement of the characteristic multipliers of a fixed point
when it bifurcates. Results showed that the number of im-
age regions is the same as the number of characteristic
multipliers that multiple Neimark-Sacker bifurcations of a
fixed point cause. This demonstrates the suitability of our
method to identify the number of image regions. In our
future work, we aim to apply our approach to gray-scale
images, texture images, and color images using a multi-
scaling method [5].
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vative Mathematical Modelling Project, the Japan Society
for the Promotion of Science (JSPS) through the “Funding
Program for World-Leading Innovative R&D on Science
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Figure 5: Arrangement of characteristic multipliers of fixed
point in proposed system for (a) 2 × 2 image, (b) 3 × 3
image, and (c) 20 × 20 image. ℜ and ℑ correspond to the
real and imaginary part of the complex number.
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